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ABSTRACT 
Our niche method independently estimates hourly 

commuter rail station-to-station origin-destination (OD) matrix 

data each day from ticket sales and activation data from four 

sales channels (paper/mobile tickets, mail order, and onboard 

sales) by extending well-established transportation modelling 

methodologies.  This algorithm’s features include: (1) handles 

multi-pack pay-per-ride fare instruments not requiring 

electronic validation, like ten-trip paper tickets “punched” 

onboard by railroad conductors; (2) correctly infers direction-

ality for direction-agnostic ticket-types; (3) estimates unlimited 

ride ticket utilization patterns sufficiently precisely to inform 

vehicle assignment/scheduling; (4) provides integer outputs 

without allowing rounding to affect control totals nor introduce 

artifacts; (5) deals gracefully with cliff-edge changes in 

demand, like the COVID19 related lockdown; and (6) allocates 

hourly traffic to each train-start based on passenger choice.  

Our core idea is that the time of ticket usage is ultimately a 

function of the time of sale and ticket type, and mutual 

transformation is made via probability density functions 

(“patterns”) given sufficient distribution data.  We generated 

pre-COVID daily OD matrices and will eventually extend this 

work to post-COVID inputs.  Results were provided to 

operations planners using visual and tabular interfaces.  These 

matrices represent data never previously available by any 

method; prior OD surveys required 100,000 respondents, and 

even then could neither provide daily nor hourly levels of 

detail, and could not monitor special event ridership nor 

specific seasonal travel such as summer Friday afternoons. 

Keywords: commuter rail, origin-destination matrix, ticket 

sales, ridership estimation algorithm, travel pattern 

 

1. INTRODUCTION 
This paper describes a novel method to estimate commuter 

rail station-to-station origin-destination (OD) matrix at an 

hourly level of granularity (assignable to specific trains), 

separately and independently for each day.  This algorithm 

combines and extends well-established transportation 

modelling methodologies and applies it to a niche problem with 

important practical implications that has nonetheless seen 

limited attention from the expert community.  Special features 

of this algorithm includes: 

 

 Handles multi-pack pay-per-ride fare instruments that do 

not require electronic validation at the time of use, such as 

a ten-trip commuter rail paper ticket that is “punched” by a 

railroad conductor at the time of ride, with no electronic 

record being made of ticket usage. 

 Infers directionality for direction-agnostic ticket-types, 

such as monthly tickets sold between pairs of stations. 

 Sensitive to day-to-day changes in travel conditions, such 

as weather, special events, and network disruption. 

 Ability to deal with a cliff-edge sudden change in demand 

or ridership patterns, such as one faced by commuter rail 

operators following the COVID19 related lockdown. 

 Estimate utilization patterns of unlimited-ride tickets in a 

sufficiently sophisticated fashion to inform operations 

planning decisions (e.g., vehicle assignment, scheduling, 

stopping patterns, connections) in a useful way. 

 Provides output in terms of whole numbers of passengers 

for each OD pair during each hour, without allowing 

rounding to affect overall control totals (e.g. daily total 

ridership) whilst keeping the probability of each origin, 

destination, and hour combination proportional to their 
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fractional ridership estimate over the long term, such that 

rounding artifacts do not appear in long-run average data. 

 Allocates hourly traffic to each train-start (i.e. schedule 

number) based on passenger choice.   

 

Data processing capabilities to analyze ticket-sales data 

this way had existed for approximately fifteen years (e.g. [1-

5]), however, conditions that generated the required input 

datasets for a commuter railway (specifically relating to the 

electronic ticket activation data) was unavailable until recently.  

eTix data on the target system is equivalent to a 40% sample of 

the overall ridership population; this large and dispersed sample 

allows us to accurately estimate behaviours of the remaining 

60%. 

 

2. MODELLING METHODOLOGY 
 

2.1 Input Data Description 
This algorithm takes as input a series of different data 

sources.  Not typical for metro systems, but common on 

mainline railways, is the existence of multiple sales channels 

which issues different fare media and for which sales 

transactions are recorded on different systems (e.g. Figure 1).  

The target system has four main sales channels and those are 

reflected in the input data streams: 

 

 
FIGURE 1: DIVERSITY OF PAPER FARE MEDIA 
 

Self-service ticket vending machines at stations and 

ticket printers operated by station agents generate sales 

transaction records in a centralized database which records the 

two points between which the tickets are valid, type of ticket 

(one-way, multi-trip, periodic unlimited ride, special discount), 

time of sale, and a unique ticket identifier.  Fare media, once 

printed, are handled manually (visual inspection, ticket punch 

cancellation) and no electronic records are generated at the 

point-of-use.  This is very different from a subway environment 

where turnstiles provide electronic records at the point-of-entry. 

Mobile tickets (eTix), which is a proprietary application 

installed on the passenger’s smart phone, transmit over the 

public cellular communications network sales transaction 

records providing much the same information as the previous 

source, but also, crucially, adds activation information detailing 

when each ticket was used.  Pay-per-ride (PPR) tickets must be 

“activated” prior to use and generate a use record.  Unlimited 

ride tickets generate an activation record when the app is 

opened for visual inspection, and do not generate additional 

records even if the app is repeatedly opened and closed within a 

time window approximating the maximum length of a trip. 

Mail order tickets have a customer database that stores 

standing orders from monthly ticket purchasers, and a refund 

database that records returns of unused and unexpired tickets. 

Onboard ticket sales generate a database detailing one-

way tickets and upgrades sold (e.g. off-peak to peak fare, or 

extensions of ride). 

 

2.2 Description of Fare Types 
The target system has more than sixty ticket types 

described in a detailed tariff document, however, for the 

purposes of modelling travel behaviour, in most cases it is only 

necessary to differentiate between four basic categories: 

monthly commutation, weekly commutation, ten-trip, and à-la-

carte single/return tickets.  PPR tickets are further subdivided 

into peak, off-peak, intermediate, child, senior, family fare, and 

special discount schemes.  This distinction is only important in 

certain cases, discussed later. 

 

2.3 Key Assumptions 
Prior to the introduction of eTix, it was impossible to 

know, once a ticket is sold, when and how the customer 

actually used it.  At infrequent intervals, surveys are carried out 

to determine how much monthly ticket holders utilize their 

tickets, but there is no time-of-day nor day-of-week detail.  The 

eTix activation records provide a means to understand this at an 

extensive level of detail—as well as when and how multi-ride 

tickets are used in the wild.  The eTix ridership comprises 

approximately 40% of total ridership, although it varies by 

ticket type, with more monthly tickets remaining on paper and 

more PPR tickets sold as eTix.   

It is necessary to assume that eTix passengers utilize their 

tickets in approximately the same way as paper ticket holders.  

We know from surveys that the demographic of paper ticket 

holders trend older, but we have little reason to believe their 

temporal travel patterns or frequency of use are on aggregate 

significantly different from eTix users. 

We also make the assumption that paper single tickets are 

purchased immediately prior to use.  It is difficult to verify this 

assumption in any meaningful way because eTix passengers do 

not have any point-of-sale issues (e.g. queuing, agent 

involvement) that may require them to purchase tickets in 

advance, and there are no discounts for advance-purchase 

tickets.  Based on anecdotal experience, we believe very few 

single ticket users purchase their tickets in advance.  (Not true 

for unlimited ride tickets, and we account for that separately.) 
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2.4 General Concept of “Lookback Windows” 
It is useful to think of PPR tickets as inventories of trip-

coupons that are held by customers, which are cancelled upon 

fulfillment of transportation.  Indeed, historical accounting 

practices reflect this tradition: tickets sold were carried as 

liability on the company’s books (“transportation owed”), until 

tickets were lifted and cancelled by traincrews, and physically 

returned to the accounting department for booking as revenue 

earned.  Therefore, to understand the probability that a given 

ticket would be cancelled today, it is necessary to model the 

customer’s outstanding unused inventory of tickets.  Because of 

business process changes, revenue accrual today no longer 

depend on the physical return of collected tickets, thus no 

reasonable way existed to know when a paper ticket was used. 

Figure 2 shows the cumulative fraction of ten-trip eTix 

rides that were cancelled within N weeks of purchase.  

Although technically these tickets are valid for six months, the 

data shows 90% of all rides were consumed within ten weeks.  

For processing time reasons, we limit the probability modelling 

to 92-days of historical ten-trip sales data. 

 

 
FIGURE 2: PERCENTAGE OF RIDES CONSUMED AS A 

FUNCTION OF WEEKS SINCE PURCHASE OF TEN RIDE 

ELECTRONIC TICKETS 
 

A similar analysis examined round-trip eTix, where the 

data showed 97.5% of return portions were collected within 

seven days of purchase.  We chose to limit the modelling to a 

lookback window of 31-days. 

Having observed the distribution of “days each ticket is 

held by the customer” from the eTix data, the number of rides 

taken today is actually just the sum product of {probability of 

usage after N days}, and {number of tickets sold exactly N days 

ago} during the lookback period.  Figure 3 explains this 

calculation graphically. 

Conceptually this is a very simple calculation, but 

numerous practical challenges exist: (1) it is necessary to 

choose the categories within which we group the distributions 

together, i.e. define appropriate strata within the 40% 

uncontrolled sample; (2) it may be necessary to modify this 

basic model to fit the usage and behaviour patterns for each 

ticket type; (3) since results are probabilities and not observed 

ticket usage, they can be very small decimals in a given market 

during a given hour; (4) due to the sheer volume of data 

required, computational processing time must be considered 

when specifying the model.  In the following sections, how this 

basic concept is applied to each ticket type will be described. 

 

 
FIGURE 3: BASIC CONCEPTUAL MODEL RELATING 

TICKETS EXPECTED TO BE CANCELLED TODAY AND 

CUSTOMER INVENTORY OF TICKETS 
 

2.5 Ten-Trip Ticket “Weeks Since Purchase” Model 
We know from past experience that ten-trip tickets are 

generally utilized by customers who have occasional needs to 

travel between fixed points (e.g. between their home station and 

a place where they occasionally do business).  For this reason, 

we believe their date and time of travel are driven by when they 

need to do business, rather than strictly based on how long they 

have been in possession of fare media.  However, we also know 

that customers try to use their tickets sooner rather than later, 

due to their inventory carrying costs, so the days-held concept 

will still apply. 

To provide a compromise model, we chose to first compute 

the number of paper tickets expected to be utilized during the 

current week, based on a distribution of weeks since initial 

purchase.  For ten-trip tickets, this distribution varies subtly by 

ticket subtype (peak, off-peak, intermediate, and senior), as 

Figure 2 shows, because off-peak and senior tickets (valid off-

peak only) are less likely to be used by occasional commuters 

(e.g. attorneys with occasional Manhattan court appearances). 

Having computed number of tickets used during this week, 

the model then sprinkles the ticket usages over the course of the 

week based on a combined distribution of day-of-week and 

time-of-day, by ticket subtype.  Figure 4 is a representative 

illustration how the usage of tickets differs by time-of-day, day-

of-week, and subtype.  For instance, fewer peak tickets were 

used on Fridays compared to Wednesdays. 

 

 
FIGURE 4: HOUR-OF-DAY DURING WHICH TEN TRIP 

TICKETS WERE ACTIVATED FOR PEAK AND OFF-PEAK 

TICKETS ON WEDNESDAYS, FRIDAYS, AND SATURDAYS 
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Note that this model does not depend on origin and 

destination station information provided in the ticket data 

because we found that time of travel is not significantly 

affected by geography.  This is not true in intercity travel where 

a journey time comprises a significant portion of the 

passenger’s day (therefore giving rise to “sleeper” and “mid-

afternoon express” type services), but in a commuter 

environment our data shows that this effect is minimal. 

 

2.6 Return (Round-Trip) Ticket Model 
It is a commonly-held belief within the commuter rail 

industry that round-trip passengers in essence fall within two 

distinct markets: a day-return market that tends to leave early 

and come back late, and a period-return market where two trips 

are practically independent in terms of departure time, where 

the return ticket is merely a device to obtain discounted fares or 

avoid the inconvenience of another transaction.  The latter 

market tends to be more elastic as it is predominantly driven by 

leisure travel.  It is not entirely obvious where one market ends 

and the other begins, particularly when the outbound trip falls 

on a Friday or Saturday.  We thus sought to answer this 

question with data.   

Figure 5 shows a typical pattern.  Those who travel 

outbound in the AM peak tend to return in the PM peak, 

although some return during the AM peak the following day.  

Those who start their trip midday usually return either during 

the PM peak or late evening hours.  Those who travel outbound 

in the PM peak typically return in the late evening, the 

following AM peak, or the following PM peak.  Generally 

speaking, those patterns held steady for Mondays through 

Thursdays, but a distinct pattern is seen each for Friday, 

Saturday, and Sunday.  Finding a distinct pattern for those three 

days is not uncommon [6].  In each case, these patterns peter 

out after about 48 hours. 

 
FIGURE 5: HOUR OF RETURN TRIP AS A FUNCTION OF 

HOUR OF OUTWARD TRIP (AM PEAK, MIDDAY, AND PM 

PEAK) IN PAY-PER-RIDE RETURN TICKETS 
 

For this model, we therefore chose a segmented approach.  

For paper tickets purchased today and yesterday, we distribute 

the time of return trip based on day-of-week and time-of-day 

when the ticket was sold (i.e. a proxy for when outbound trip 

was taken).  We then apply a filter to discard expected return 

travel that doesn’t occur today (such that tickets bought 

yesterday and used for return travel yesterday doesn’t interfere 

with today’s results).  We call this portion the “48-hour model”. 

Although we do have peak and off-peak information in the 

sales records, we decided not to use that information for two 

reasons: (1) because we distribute expected ticket usage hour-

by-hour, that distribution should capture the peak/off-peak 

distinction anyway, because user behaviour is reflected in the 

distribution; (2) peak tickets are valid during off-peak periods, 

and off-peak tickets are often used during peak periods upon 

payment of appropriate step-up charges.  Although we could in 

theory process all of this data (correlating paper ticket sales 

with onboard sales), it makes the model unnecessarily complex. 

For tickets purchased earlier than yesterday, we apply the 

basic “days away” logic by day-of-week (because more 

passengers stay two or more nights when the outbound travel 

occurs on a Friday) to determine the fraction of tickets expected 

to be used today.  Once the expected daily total ticket usage is 

found, we then sprinkle that based on the distribution of return 

trip hours from all return portions of round-trip tickets where 

passengers stayed at their destination for at least two days.  The 

use of this distribution, rather than a general distribution of 

hour-of-day in which tickets are used, is significant, because we 

found that the use of return portions after at least one night’s 

stay is likely to be biased towards earlier in the day (see Figure 

6).  We call this the “period-return model”. 

 

 
FIGURE 6: HOUR OF RETURN TICKET USAGE AS A 

FUNCTION OF OUTBOUND/RETURN PORTIONS AND DAY 

RETURN VERSUS PERIOD RETURN 
 

In the off-peak, two passengers travelling together often 

purchase a return ticket and use both portions for the same 

journey (permissible).  This shows in the data as activation of 

both portions within minutes of one another, and requires the 

origin and destination records to be swapped for the return 

portion. 

The 48-hour model covers 87% of the market overall for 

us, but on Fridays its coverage drops to 78%.  Both models are 

important in providing a complete view of travel behaviour. 

 

2.7 Monthly Ticket “Day-of-Week Zone Hour” Model 
Initially we thought that geography might affect unlimited-

ride ticket utilization, as passengers with longer commutes 

(some in excess of two hours each way) might be expected to 

utilize their monthly ticket less frequently or intensively than 
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someone whose commute is only a half-hour long.  Figure 7 

shows this is not really the case. 

We knew from prior work [7] that the number of weekdays 

and holidays in each month has a significant and measurable 

impact on monthly ticket utilization, we therefore model 

monthly ticket utilization as a two-stage problem: (1) given 

today is, e.g. a Friday in January, what is the fraction of 

monthly ticket issued that I would expect to “see” on the 

system; (2) given that a specific ticket is seen today, how many 

trips do we expect that ticket to redeem?  This is in contrast to a 

more traditional approach that might measure average trips per 

month.  Multiplying the number of tickets issued by both of 

these factors provides total rides expected to be consumed 

today by holders of these tickets.  These factors are computed 

separately for each month, and for each day of the week.  By 

doing this, the impact of holidays (e.g. Martin Luther King day, 

July 4, Thanksgiving week, Columbus Day, etc., all of which 

have distinct levels of commuter ticket usage) are automatically 

and specifically accounted for.  In determining these factors it 

was necessary to enumerate count of each daytype within each 

month, requiring some complex calendar maths. 

 

 
FIGURE 7: DAYS MONTHLY TICKETS ARE SEEN TO BE 

ACTIVE BY FARE ZONE (ZONE 2 = CITY, ZONE 5 = PRIME 

SUBURBAN TERRITORY, ZONE 8 = EXURBAN AREAS) 
 

Monthly tickets are sold beginning on the 25th of the prior 

month, and continue to be sold up until around the 15th.  The 

lookback window for monthly tickets is therefore 38 days, and 

a filter is applied to find only those tickets sold relevant to the 

current month.  In addition to ticket vending machine data, 

sales data from mail order tickets are also merged in.  eTix 

monthlies are treated separately because we can directly 

observe activations of those “tickets”. 

Figure 8 shows two interesting phenomena: (1) morning 

commutes begin earlier for those living further away from 

downtown (i.e. Zones 09/10); (2) on the system’s extremities 

where service frequency is sparse, afternoon ticket usage is tied 

to specific popular train departures (Zone 10).  Although we do 

not need to model ticket usage frequency as a function of 

geography, we need it for accurate estimation of hour-of-day. 

Having determined how many rides would be redeemed 

today (preserving origin-destination information in sales data), 

we sprinkle these rides amongst the 24-hour day based on 

relevant hourly distributions for that specific day-of-week, and 

origin and destination fare zones.  The day-of-week is included 

because temporal travel patterns are different for Friday, 

Saturday, and Sunday, even amongst season ticket holders. 

 

 
FIGURE 8: PERCENTAGE OF TRIPS TAKEN BY MONTHLY 

ETIX HOLDERS AS A FUNCTION OF TIME-OF-DAY, BY ZONE 
 

Despite the aggregation of geography from station-to-

station to the larger farezone-level (one fare zone contains 

multiple stations), there were nonetheless some OD zones on 

specific days of the week for which no eTix activations were 

observed at all.  In those cases, the estimated paper ticket usage 

risks getting lost unless there is a “residual” process to recover 

them.  In cases where no time-of-day pattern could be found 

(~0.2%), we divide them according to a generic zone-

independent hour-by-hour activation distribution of all monthly 

tickets. 

 

2.8 Weekly Ticket Model 
The weekly ticket model is basically identical to the 

monthly model, except that the “lookback period” is 12 days, 

and utilization factors are separately computed for each of the 

52 weeks of the year. 

 

2.9 Origin-Destination Model Structure 
At this point, it is useful to review the estimation model’s 

overall structure.  In summary, eTix sales and activation data 

are used to generate various distributions, separately for each 

ticket type, representing how the tickets that were sold, would 

end up being used.  These patterns determine the number of 

rides redeemed, and the date and time of such rides relative to 

when the tickets were sold or the ticket’s validity period.  These 

patterns do not determine the ticket’s geography, which is 

recorded at the time of sale and typically not altered except 

through on-board extension-of-ride supplemental fares. 

Separately, sales records from various non-mobile sales 

channels (from which ticket usage cannot be observed) were 

combined, summarized, and multiplied by these distributions 

based on variables relevant to each ticket type.  This produces a 

daily hour-by-hour, station-by-station partial OD matrix that 

represents the probability that tickets with that OD would be 

used during that hour on that day.  This is combined with sales 

data for single ride tickets and outbound portions of return 

tickets, which represent actual ODs observed.  Figure 9 shows a 

high-level block diagram. 

Probabilities are usually decimals, and fractional 

passengers are not necessarily useful in transport planning.  In 

commuter rail, small ODs at unsociable hours have very sparse 
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demand, seeing perhaps one or two trips a month, translating 

into 0.03 trips per hour per day.  If a one-way ticket sale was 

seen during that hour for that OD, then we know for sure that 

someone did travel that day, but a method is still needed to 

definitively assign that one probabilistically estimated marginal 

passenger to one specific hour, to represent the possibility that 

someone perhaps did travel that day, but this must be done in 

such a way as not to affect either long-term averages for that 

specific hour in that OD, nor to affect daily “roll-up” control 

totals.  This is the “Fractional Passenger Dithering Process”. 

 

 
FIGURE 9: PHASE I BLOCK DIAGRAM SHOWING HOW 

PARTS OF THE TICKET RIDERSHIP ESTIMATION MODEL 

WORK TOGETHER WITH DIFFERENT DATA SOURCES 
 

Figure 10 represents the solution space for the system’s 

OD matrix during the seventeenth hour for a normal weekday.  

Grey pixels represent OD pairs that contain nonzero values 

representing less than one passenger.  Black pixels are more 

than one passenger, and white pixels are either invalid ODs 

(meaning tickets are not sold for that market) or an OD having 

exactly zero passengers assigned.   

 

 
FIGURE 10: GRAPHICAL REPRESENTATION OF TYPICAL 

PROBABILISTIC DAILY-BY-HOUR COMMUTER RAIL OD 

MATRIX—GREY CELLS REPRESENTS BETWEEN ZERO AND 

ONE PASSENGERS DURING ANY ONE GIVEN HOUR 
 

Commuter rail demand is so focused on travel in and out of 

important urban centres, including between central business 

district and suburbs, that even during height of the rush hour 

many markets show less than one daily passenger per hour.  

(Although, it should be noted that with 4,646 valid OD pairs, 

and about 250,000 trips per weekday, the average hourly 

ridership per OD market assuming completely uniform 

distribution would only be 2.24 passengers; these issues are 

inherent in modelling low density traffic.) 

 

2.10 Error Diffusion for Passenger Counts 
The algorithm for finding individual integer solutions for 

each cell that fit within the overall ridership picture borrows 

from an established methodology in digital audio and image 

processing called “dithering” [8].  Dithering is the intentional 

addition of noise (random or systematic) to prevent large scale 

quantization errors when converting from a continuously 

variable source to one with discretely defined levels.  Both 

truncating (using only the integer part of output) and 4/5 

rounding leads to this predictable and repetitive form of error, 

and won’t preserve overall control totals either within margins 

of the matrix, or across multiple days or hours of OD data. 

Our error diffusion algorithm treats the OD matrix 

sequentially, sorting fractional outputs by origin station, 

destination, and hour-of-day.  Consequently, accumulated 

errors are in effect first moved to adjacent hours, and then to 

adjacent destinations if necessary.  The algorithm keeps track 

of errors from truncating each non-integer value, and augments 

the output by one passenger in that OD-hour combination when 

a specific criterion is met.  To keep control totals constant, it is 

important to augment exactly one market by one passenger for 

each 1.000000 worth of accumulated truncation errors.  This 

approach is conventionally termed “bucket rounding”.  

However, we must not simply augment markets within which 

the 4/5 rounding condition is reached, because doing so could 

lead to systematic and repetitive errors, which would be visible 

in the data and could artificially inflate ridership significantly in 

those markets over the long term, when, for instance, a whole 

month’s worth of OD matrix data is summed. 

One approach to solving this issue is to essentially 

randomize the point at which accumulated errors are added to 

the market, such that overall probability of “adding one” is 

proportional to the contribution of truncation errors from each 

market.  Although this would lead to proper outputs on average, 

it would not guarantee that daily control totals would be 

maintained, and that the results would not be deterministic so 

model runs would not be reproducible.  This approach is 

unacceptable for transport planning models and is also known 

to produce undesirable artifacts in image and audio processing, 

causing random noise (sometimes swamping actual data) 

especially in slowly varying, low-amplitude regions like 

intermediate ridership on the railroad’s branches. 

We therefore developed an algorithm for deciding when to 

“add one” that varies on a repeating, but very long cycle that 

also contains shorter cycles, but the two cycles are set up to 

drift in and out of phase.  It is the mathematical equivalent of 

having a cam that rotates over a number of followers, but the 

frame itself is also rotating much more slowly, such that the 

entire assembly does not end up in the same position until the 

lowest common multiple of the two cycles are reached.  The 

shorter cycles guarantee that data artifacts would be evenly 

distributed between destinations within each origin market, 
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whereas the longer cycles ensure that artifacts are evenly 

distributed between days and months across each OD market.  

To accomplish this, we chose prime numbers to drive divisors 

in establishing when “add one” occurs within each 1.000000 of 

accumulated errors, and the probability of adding one remains 

proportional to each market’s contribution to cumulative error.   

 
CulErr = 0; LastCulErr = 0;  

Param2 = 0; Param2Cycle = 67;             //Prime no 

Param4 = 0; Param4Cycle = 1009;           //Prime no 

Param3Date = ((RunDate Mod 7) / 7 +  

   (RunDate Mod 31) / 31 + (RunDate Mod 365) / 365); 

Param3 = Param3Date – Int(Param3Date); 

While OD_hr_Markets_Remaining do { 

   IntTrips = Int(EstTrips); 

   ResidualTrips = EstTrips – IntTrips; 

   CulErr = CulErr + ResidualTrips; 

 

   Param2 = (Int(CulErr) Mod Param2Cycle) / Param2Cycle; 

   Param4 = (Int(CulErr) Mod Param4Cycle) / Param4Cycle; 

   SumParams = Param2 + Param3 + Param4; 

   Threshold = SumParams - Int(SumParams); 

   If ((LastCulErr < Threshold + Int(LastCulErr)) and  

       (CulErr >= Threshold + Int(LastCulErr))) or 

      ((LastCulErr < Threshold + Int(CulErr)) and  

       (CulErr >= Threshold + Int(CulErr))) Then 

      NewTrips = IntTrips + 1 

   Else 

      NewTrips = IntTrips; 

   If NewTrips <> 0 Then Writeout(NewTrips, database); 

       

   LastCulErr = CulErr;   RetrieveNextRecord; 

} 

FIGURE 11: PSEUDOCODE FOR QUANTIZING 

PROBABILISTIC PASSENGER COUNT DATA 
 

As this is the most complex aspect of this algorithm, the 

pseudocode necessary to implement the dithering algorithm is 

provided in Figure 11.  This algorithm could be applied to any 

set of sequential transport planning data that needs to be 

quantized while distributing truncation errors to nearby buckets 

in a predictable and proportionate-probability fashion. 

 

2.11 Directionality Issue 
After full implementation, we discovered a directionality 

issue.  Multi-ride tickets and passes on commuter rail are sold 

such that they are valid for travel in either direction between 

two defined points.  Passengers therefore tend to flip origins 

and destinations whimsically.  On a daily level, the issue 

washes out on average because commuter traffic tends to be 

directionally balanced.  On an hourly level, however, e.g. 

during the morning peak, a suburban station such as Irvington 

may originate 95% of the total suburb-CBD traffic, and 

terminate 5% (due to the proximity of a small business park).  

But about 60% those travellers held nominally inbound tickets, 

whilst the other 40% held outbound tickets.  Fractions of 

inbound and outbound passengers by hour must thus be 

determined independently of origin and destination stations 

shown on the ticket. 

Luckily, due to a ridership census (see Section 3.6 below), 

a dataset existed for the target system that provided boarding, 

disembarkation, and leave load counts for each scheduled train.  

This data was not easy to collect, as it involved stationing one 

surveyor per coach to check ride the entire trip gathering data 

for all 800 daily train starts, separately for weekday, Saturday, 

and Sunday.  The entire data collection effort took place over 

three calendar years.   

This data is fed into a standard “frataring” (iterative 

proportional fitting, IPF, see e.g. [9]) algorithm to synthesize a 

directionally-correct train-level OD matrix (albeit “smeared” 

over the three-year data collection period, during which many 

schedule adjustments took place), summarized by origin-

destination and hour, then expressed as an inbound/outbound 

fraction.  This fraction (where it exists) is then used allocate the 

observed passengers in the main OD model output, in each 

origin-destination market for each hour.  This process preserves 

daily passenger-count and ticket-type information by hour from 

the ticket data, but reallocates the fraction of inbound/outbound 

passengers by hour such that directionality is more accurate, 

applying only to directionally-ambiguous ticket types.  A 

summary is provided in Figure 12, represented by the “Fratared 

Onffs by Hr” canister in Figure 9. 

 

 
FIGURE 12: PHASE IA BLOCK DIAGRAM SHOWING HOW 

TRAIN-BY-TRAIN ONFF COUNTS ARE USED TO INFORM 

DIRECTIONALITY OF TICKET-SALES INFERRED TRAFFIC 

(GTFS = GENERAL TRANSIT FEED SPECIFICATION) 
 

3. RESULTS AND DISCUSSION 
 

3.1 Practical Implementation 
We implemented this model in Microsoft Access 2000 

using a combination of the Jet database engine and the built-in 

Microsoft Visual Basic for Applications (VBA) compiler.  

There were obviously many tools for this task that may have 

been better (e.g. Oracle database, Python script, “R” analytics 

software, SAS, or cloud-based tools), however, newer tools 

either took too long to set up (because it would involve the I.T. 

department) or would have a learning curve (due to existing 

skillsets of current personnel), that we decided it was faster to 

work with older tools that we know we could work with 

reliably and accurately.  When developing this type of 

algorithms, it is more important not having to doubt and 

double-check that the tool is performing your intended 

commands, than to have a theoretically elegant solution that 

may require experimenting with the tool as opposed to focusing 

on the algorithm. 

One of the practical limits with this toolset is that largest 

table that could be handled is 2 GB in size.  This means eTix 

sales, activation, and ticket vending machine data must be 

exported from the enterprise database in two-month chunks.  

This was not a terrible handicap, as we simply read in relevant 

datasets from multiple files during the first stage of processing.  

This has the advantage of being able to discard in advance 

(with program code) data records not required during the 

current stage of processing, speeding up query execution in the 

more complex parts of the model.  For instance, the ten-trip 
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model pre-processor must read in 92 days’ worth of contiguous 

ticket sales data from numerous source files, but discard all 

sales transaction that doesn’t concern ten-trip tickets, 

dramatically reducing the data from 4.5 million records (per 

quarter) to ~85,000 records.  This is a common technique in big 

data processing [10] from an era when modern computer tools 

were not widespread. 

 

3.2 Execution Time Performance 
This model runs in three stages: (1) compute directionality 

factors, i.e. “frataring”; (2) summarize required information 

from eTix sales and activation data into distributions used to 

drive the model, called the “calibration stage”; (3) apply 

distributions to synthesize an OD matrix for a given day, 

termed the “execution stage”.  Table 1 below shows the time 

required to run all of 2019’s data. 

 

Phase Model Step Run Time Runs Req’d 

Frataring Directionality 1 Min 30 Secs 1 

Calibration Round-Trip 3 Minutes 16 

 Ten Trip 15 Seconds 12 

 Monthly 3 Mins 30 Secs 18 

 Weekly 5 Seconds 18 

Execution Pre-Processing 2 Minutes 365 

 Single/Return 4 Minutes 365 

 Ten Trip 1 Min 15 Sec 365 

 Monthly 5 Seconds 365 

 Weekly 3 Seconds 365 

 Mobile Ticket 45 Seconds 365 

 Dithering 20 Seconds 365 

TABLE 1: MODEL RUN-TIME PERFORMANCE STATISTICS 
 

Execution time was timed on a Core 2 Q8300 at 2.5 GHz 

and 8 GB of RAM (a twelve-year-old computer), connecting to 

local databases residing on an external USB hard drive.  

Execution time is actually a critically important part of any 

transportation model’s performance, particularly in applications 

involving big data.  If model calculations are too slow, planners 

will not be able to do scenario analysis and will simply not use 

it to inform decision making, which is not useful. 

Total time requirements of 10 minutes per day’s worth of 

data after calibration implies the entire year could be run in 

approximately 60 hours.  Whilst slower than ideal, it is well 

within the range that model outputs can be considered useful.  

Some models take many hours to run a single day’s worth of 

data, which would be far less useful. 

 

3.3 Sample Results 
OD matrices can be difficult to present in tabular form.  

Classic output shows origins on one axis and destinations on 

the other, looking somewhat like mileage tables appended to 

old-fashioned highway atlases, or fare tables in commuter rail 

timetables.  Representing an hourly OD matrix is nearly 

impossible, as it would require three basic dimensions (O, D, 

and hour) to be displayed simultaneously.  This could be done 

as computer animations cycling data through each hour, but 

that might not be analytically fruitful.  Summary views would 

have to be developed from this database based on service 

planning questions being asked. 

Figure 14 shows the whole-day OD matrix for the Hudson, 

Harlem, and New Haven Divisions (including Branches) in a 

colour-coded way, with station codes along both axes running 

from south to north then onto branches, left-to-right and top-to-

bottom.  The sheer domination of Grand Central Terminal is 

readily apparent; however, the Hudson Line graphic also shows 

two stations of secondary importance (Yonkers and Marble 

Hill) that connects strongly with virtually every other station on 

the line; tellingly, those were stations that received off-peak 

diesel express service during 1994~2012.  This is the sort of 

insights that inform service planning when drilled down into 

the hourly level whilst contemplating which trains could make 

additional stops to provide more journey opportunities where 

demand exists in temporal and geographic space, even if it 

doesn’t necessarily tell us the causal directionality.   

 

Hudson Division (Monday 4/1/2019) 

   
Harlem Division (Monday 4/1/2019) 

   
New Haven Division (Monday 4/1/2019) 

   
FIGURE 14: SAMPLE VISUALIZATIONS OF ALL-DAY OD 

MATRICES FROM TICKET RIDERSHIP ESTIMATION MODEL 
 

The Harlem Line graphic reveals suburban hubs at 

Fordham and White Plains.  Melrose appears strongly 

connected with stations south of White Plains but not well 

STARTSTATION1 2 3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 43 46 48 50 52 54 56 57 58

1 40 156 57 31 192 935 616 169 1098 163 517 1112 1070 260 844 2155 366 558 1204 2184 771 1118 2 244 3 502 1713 696 1112

2 36 9 12 2 21 28 18 16 121 10 13 21 45 15 19 104 4 3 44 52 8 65 14 19 88 20 74

3 56 8 3 18 32 35 22 113 35 30 15 55 57 41 109 4 37 87 4 31 3 7 49 13 52

4 72 6 7 4 6 2 3 9 5 6 9 1 2 5 11 7 1 4

6 24 2 1 1 1 7 24 5 11 8 18 19 8 12 1 16 7 3 6 1

8 181 23 15 1 2 1 20 79 28 19 42 50 75 48 136 7 8 78 44 2 33 1 1 19 1 16

10 1100 29 62 2 1 1 1 2 2 4 1 2 3 1 3 4 2 2 2

12 631 19 41 3 1 2 1 7 1 4 2 1 3 2

14 203 14 42 2 8 21 1 2 8 9 14 8 5 3 11 6 2 5 1

16 1110 90 170 20 24 124 2 1 1 1 25 26 15 38 50 3 2 49 31 6 43 1 14 7 34

18 259 30 77 11 16 43 1 8 1 5 1 4 1 1 1 1 1 1

20 595 13 65 1 14 33 1 2 3 3 1 1 3 7 1 1 1 1

22 1295 24 32 4 6 70 1 7 11 1 3 1 6 4 2 5 1 4

24 1228 26 61 7 11 65 4 4 5 22 1 1 2 1 7 2 7 1 2 1 1 3

26 283 14 22 2 9 41 1 2 17 1 1 4 2 3 3 1

28 921 21 44 1 3 37 2 5 24 1 1 6 8 8 5 1 3 1

30 2442 78 236 10 14 113 3 2 2 52 4 17 14 3 5 38 8 4 32 1 1 11 3 26

32 255 14 1 1 5 4 2 1

34 773 8 7 3 15 1 4 6 2 1 4 1 2 1 1

36 1206 35 78 9 25 120 6 6 43 6 7 5 7 3 27 6 9 1 2 4 1 5

38 3228 58 137 6 6 102 1 4 7 42 2 1 7 24 9 9 9 5 3 9 1 2 12 3 9

43 1145 17 8 1 4 2 2 3 1 8 3 5 2 1 5 8

46 1223 81 80 3 7 35 1 3 1 46 2 7 8 43 13 7 2 2 2 9 6 23

48 2

50 304 21 4 3 8 3 1 3 2 3

52 4 1

54 340 17 14 5 1 7 1 4 3 1 1 3 1 1 4

56 2069 160 94 9 5 39 2 2 2 44 1 3 9 12 36 1 6 7 9 35 3 1 13 58

57 887 43 38 4 20 7 4 1 3 1 1 10 4 4 1 12 1 2 1 1 1

58 1435 94 90 5 35 1 24 3 3 5 35 1 12 5 13 27 2 13 55 1

YonkersMarble Hill
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STARTSTATION1 2 3 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 140 142 146 148 150 152 154 156 158 160 162 163 164 166 167 168 170 172 174

1 40 156 37 51 900 214 175 1084 403 618 1469 2326 1115 1503 3669 2195 6208 2009 283 405 866 1582 767 396 780 999 335 334 538 751 73 137 89 47 18 168

2 36 9 4 6 167 21 14 38 12 32 48 90 27 34 83 22 598 81 2 13 47 16 17 15 11 8 4 6 24 23 2 5 4 5 1 12

3 56 8 1 2 3 5 4 4 18 2 1 1 1 6 1 3 2 2 2 4 6 1

104 43 5 9 2 6 13 5 14 11 20 12 13 10 5 108 16 5 7 6 2 5 4 3 3

106 42 6 1 2 2 5 4 7 13 12 16 9 5 4 49 2 9 1 5 1 4 1

108 675 83 6 2 2 38 21 117 119 148 119 89 116 41 1193 85 14 27 77 41 212 7 19 34 5 15 8 2 1

110 207 22 4 3 1 2 15 12 16 7 10 13 2 53 6 1 4 9 3 1 1 1

112 184 21 11 3 2 1 5 14 28 17 15 26 7 157 8 3 5 9 4 9 2 1 1

114 960 40 26 8 47 3 1 1 5 10 27 19 5 18 20 202 5 11 10 1 10 1 5 6 1 1 1 1 2 1

116 517 21 14 10 19 2 1 2 12 5 5 6 4 73 5 3 2 1 3 1 2 1 1

118 665 33 1 39 19 106 9 8 4 2 5 8 5 31 23 214 16 6 7 12 19 4 8 5 5 2 2 1

120 1787 65 1 63 17 121 21 23 4 2 6 4 5 11 16 104 15 4 9 11 1 10 3 3

122 2927 53 1 30 12 150 25 25 22 12 4 5 5 9 6 7 90 9 1 1 5 2 4 20 2 1

124 1468 29 6 36 21 82 8 17 10 6 11 7 3 2 8 49 7 3 1 6 3 2 2

126 2054 20 9 18 5 169 27 27 11 3 3 7 8 1 2 5 51 3 1 3 7 1 4 5 1

128 3886 47 6 24 10 96 19 27 18 4 26 13 5 6 4 1 23 2 1 4 3 1 5 7 1

130 2330 36 15 5 71 11 5 7 2 15 1 2 5 2 1 10 2 2 3 2 1 3 9 3

132 6373 340 37 116 51 723 58 129 139 42 157 68 44 33 23 39 8 6 6 22 80 39 112 24 50 32 1 12 63 24 7 11 7 5 7

134 2325 38 4 22 5 67 9 9 4 1 27 8 6 3 2 9 1 7 12 1 2 1

136 371 8 3 9 4 1 1 4 3 1 5 4 2 4 1

140 1

142 702 15 5 1 1 19 4 4 2 1 4 1 1 1 5 17 4 1 6 1 15 2 2

146 909 27 1 1 50 9 4 2 1 7 2 5 1 16 10 56 3 3 32 9 7 7 1 6 2

148 2212 22 3 5 33 4 5 2 6 1 3 1 23 2 1 3 10 1 2 2 1

150 821 19 10 2 30 1 9 2 2 16 1 2 1 5 4 1 81 2 4 1 14 24 2 7 13 3 2 6 85 20 5 1 2

152 469 10 8 1 1 2 2 1 22 1 7 3 14 6 1 10 1 3

154 1115 15 3 4 3 16 2 3 4 1 9 26 2 5 3 4 3 11 1 1 1 10 4

156 1172 14 4 4 16 4 1 3 1 5 2 3 24 1 16 1 6 4 1 1

158 477 8 3 1 1 1 1 2 1 1 2 2 1

160 471 24 3 1 16 1 1 2 3 5 2 21 1 1 4 1 2 2 4

162 748 39 2 2 2 25 3 6 1 3 2 2 5 1 76 4 4 4 17 4 113 14 14 6 1 3 5 5 10 3

163 1213 30 14 5 4 20 3 1 4 4 6 2 1 1 2 45 3 1 3 1 7 7 4 2 3

164 59 4 9 2 5 1 5 4 1 2 1

166 144 7 2 2 1 1 16 1 3 2 3 7 3 2 1 3 2

167 2

168 67 2 2 1 2 2 1 1 1

170 50 3 2 1 5 4 3 3 1 2 1 1

172 20 1 1 1

174 154 8 5 1 5 1 1 2

White PlainsFordham
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STARTSTATION1 2 3 108 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 245 246 248 250 251 252 253 260 262 264 266 268 270 272 274 276 278 280 290 292 294 295 296 298

1 40 156 900 956 1896 3207 3047 1688 1954 1625 1615 3291 701 479 740 5816 996 1397 524 1262 426 1740 560 202 1313 996 1039 427 451 323 1676 45 363 455 276 1078 90 182 158 97 26 99 67 2 4 2 1 11 86

2 36 9 167 97 42 164 45 62 41 65 53 172 8 4 15 441 10 32 4 58 17 34 4 7 25 23 66 23 12 16 164 17 4 6 1 19 1 3 2 1 10 1 1 2 25

3 56 8 2 6 5 4 5 4 9 15 1 25 3 3 5 10 12 12 5 18 7 9 38

108 675 83 437 139 860 131 256 183 141 338 135 14 9 26 333 9 21 3 68 5 14 3 1 11 12 130 8 6 7 55 4 6 2 6 7 2 1 9 2 32

202 1019 94 6 303 1 92 59 96 67 66 240 36 3 14 11 75 2 2 13 1 2 5 7 28 1 5 1 9 1 2 4 2 1 3

204 2409 51 7 136 5 16 8 15 16 17 29 5 2 26 6 1 5 1 2 1 2 1 1

206 3797 171 14 589 114 15 33 127 58 53 221 36 2 3 5 78 7 1 12 1 4 4 6 5 12 3 2 1 9 1 2 2 4

208 3457 57 3 164 41 5 31 10 6 37 19 24 34 2 1 1 3 2 1

210 2079 68 15 137 73 10 120 9 4 10 61 17 1 5 19 1 2 2 2 2 1

212 2157 32 11 104 56 10 43 9 11 7 14 9 27 4 1 2 4 1 4 5 1 2

214 1818 31 18 102 34 6 44 6 4 4 8 10 2 2 1 21 1 4 1 2 4 1 2 1

216 1801 61 6 201 163 15 158 32 67 16 13 32 1 3 25 101 2 3 5 16 7 1 2 4 2 15 1 1 3 11 4 3 1 10 1 3

218 2410 65 23 87 31 8 25 8 13 3 16 42 3 4 5 66 1 3 2 30 9 15 16 3 22 18 36 10 16 4 16 2 6 4 2 1 2 1 5 1 2 1

220 790 8 15 1 1 4 1 8 5 5 1 3 2 3 2

222 607 5 2 5 4 2 3 2 1 2 3 2 2 4 2 1

224 997 9 3 21 6 1 5 2 14 19 6 1 15 2 3 3 6 5 1 5 1 2

226 5917 215 63 279 68 12 84 23 24 22 50 123 121 3 5 19 6 20 3 189 48 64 36 14 114 205 602 155 174 54 210 24 6 12 80 12 4 8 10 4 29 33 3 2 5 3 20

228 1298 7 9 2 1 2 1 10 3 31 16 5 1 5 3

230 1644 32 21 17 4 5 4 6 2 6 7 2 2 48 3 33 14 16 3 14 2 9 1 1 2

232 550 3 1 1 1 1 4 4 27 9 1 2 6 1

234 1589 56 19 60 5 8 3 2 5 4 22 41 4 4 156 2 11 1 14 11 5 24 29 127 26 28 7 28 3 2 5 17 2 2 6 4 15 2 1 5

236 558 12 2 7 2 1 5 17 1 54 4 3 4 31 6 21 3 13 13 4 1 2 1

238 2089 43 9 8 1 2 3 26 67 1 2 10 1 2 4 1 37 7 26 4 25 4 1

240 719 6 2 1 15 27 2 3 2 1 1 1 1

242 287 3 2 1 10 39 1 8 1 2 7 8 6 2 2

244 1611 38 33 13 2 5 2 2 4 75 6 255 2 24 17 13 3 1 14 6 68 9 21 11 1 1 1 2 1

245 1538 40 23 16 6 7 1 2 2 3 9 120 6 9 1 555 4 16 1 76 12 1 3 3 7 5 29 4 21 14 1 1 3 1 1 2

246 1354 96 161 27 4 18 6 4 10 8 23 151 7 9 12 1446 10 46 3 284 40 31 19 2 18 13 10 28 55 215 30 1 6 9 3 6 6 24 11 1 15 97

248 581 36 34 31 3 4 2 3 4 4 5 69 5 8 7 519 2 8 116 10 9 7 23 4 12 5 12 45 19 1 1 3 2

250 632 19 13 12 2 8 2 2 5 5 79 5 2 6 532 12 90 13 18 4 37 7 28 8 17 27 24 3 2 1 1 1

251 442 22 14 14 2 7 1 4 6 24 1 2 296 2 12 3 32 5 5 8 1 16 8 78 14 12 11 2 1 1

252 1898 136 50 64 10 1 13 2 2 1 4 35 1 5 327 2 5 2 46 11 27 2 4 40 22 269 45 50 24 7 1 3 2 1 3 7

253 19 6 1 2 19 1 2 1 1 16 3 1 2

260 398 5 2 1 2 1 2 6 5 4 3 2 1 1 3

262 453 4 4 3 1 3 2 1 2 9 19 1 1 2

264 317 6 1 1 2

266 1386 11 16 3 1 1 2 6 16 60 2 3 1 2 1 1 1 2

268 119 1 19 1 2 1 2 1 4

270 303 3 2 4 26 1 3 4 1

272 151 1 15 2 1

274 87 2 2 1 2 11 1 26 5 1 1 2 1

276 29 1 4 25 1 2 1

278 106 2 2 1 13 96 1 12 2 26 3 1 1

280 100 17 5 3 1 1 6 2 90 1 19 3 3 4 13 2 2 2 1

290 6 1 1 4 2 2 1 3 1 3 11

292 3 1 1 1 2 2 4 7 7 1 2 11 1 2 3 12

294 7 2 5 3 2 2 1 3

295 2 3 1 1 1

296 10 1 1 3 10 1 2 1 1 11 1 4 3 2 5

298 106 29 2 25 3 7 3 1 20 1 4 2 1 2 78 3 2 2 20 14 3 2 14
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connected with others.  This could be a function of the existing 

service plan or an indicator of underlying travel demand. 

On the New Haven Line, Stamford, Greenwich, Norwalk, 

and Fordham show strong connections with all other stations, 

affirming our understanding of current travel patterns. 

 

3.4 Marginal Summaries 
One way of visualizing and utilizing OD data is to flow it 

over a network model to determine link-loads and use those 

“load profiles” to make service decisions.  At this time, the 

target system does not have a network model, but it is 

nonetheless possible to understand passenger loads along a line 

(although not a specific service route) by sorting results by 

station location, then integrating boardings and disembarkations 

at each station to determine onboard loads.  This analysis is 

sometimes termed “marginal” analysis because it requires 

summing data both down and across the OD matrix, with the 

results often shown in margins of the table. 

Figure 15 shows load profiles of the three lines attributable 

to those holding single and return tickets.  The peak load points 

in those cases were not actually near the central business 

district, because non-CBD ridership tends to heavily favour 

pay-per-ride tickets.  When these results are combined with 

data from the unlimited ride ticket model, the peak load point 

shifts substantially towards the CBD. 

 

 
FIGURE 15: NORTHBOUND PAY-PER-RIDE PAPER TICKET 

LOAD PROFILES FOR ALL THREE LINES 
 

3.5 Graphic Representation 
One original motivation of developing this model is to 

provide a graphical representation of OD travel demand on the 

target system.  Figure 16 shows a map-based representation of 

the OD matrix.  Because the travel pattern is so dominated by 

travel to CBD, this visualization turned out not to be 

analytically informative unless filters were implemented.  We 

are currently working with a vendor to develop a web 

application that would allow users to select how they want to 

visualize this data, which would fully unlock the analytical 

value of these ridership estimates. 

 

 
FIGURE 16: MAP OF THE SERVICE TERRITORY SHOWING 

RELATIVE DEMAND DENSITIES OF ALL OD PAIRS 
 

3.6 Model Verification and Validation 
Validating this model, like other big data analytical results, 

is practically impossible.  In theory, results derived from big 

data sources should be 100% accurate provided the analytical 

algorithm is implemented correctly.  However, many issues can 

arise in practice, including corrupted and missing data (often 

due to field communication issues with data gathering devices), 

data misinterpretation, etc.  Data gathered from transport 

systems typically must travel over code lines (or ethernet, or 

wireless networks) subject to all sorts of weather-related 

disruptions; systems often have different designs for dealing 

with code line down conditions and can error-correct or re-

transmit to different extents.  Ticket sales data are amongst the 

most reliable field-collected data because they involve financial 

transactions where errors are not tolerated by either the 

company or customers. 

The type of algorithm described here is particularly 

problematic because it relies on estimation to deal with 

information that the equipment does not collect.  Short of 

manually collecting a very large sample (which is impractical, 

and in any case would be subject to data collection errors), 

there is basically no way to verify the outputs of this model. 

We came up with two different approaches to validate the 

model to some extent.  The system had performed an origin-

destination survey (perhaps better termed a “census”) several 

years ago with more than 100,000 respondents and a 40% total 

population response rate [11].  Comparing model results with 

the survey should provide some level of assurance.  Although 

this sample size sounds very impressive, the reality in 

commuter rail is that CBD-based travel so dominates the traffic 

pattern that 5% of total ridership accounts for the bottom 72% 

of OD markets (in this case, each market accounts for fewer 

than 50 daily passengers).  Attempting to ascertain accurate 

ridership counts in these markets using a sample survey 

methodology is practically impossible. 

Figure 17 shows the comparison between survey data and 

four days’ worth of model output.  The model is fairly 

internally consistent, but shows some level of deviation from 

survey data.  On average, the survey reports ridership that is 5% 
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higher, but there are some notable exceptions.  Nonetheless, the 

curve fit shows very good correlation with R² values in excess 

of 0.93 in all cases.  We believe some visible deviations are due 

to errors in the survey, rather than issues with the model.  

However, based on available data, there can be no definitive 

conclusion one way or another. 

 

 
 

FIGURE 17: CORRELATIONAL ANALYSIS OF OD SURVEY 

DATA WITH TICKET RIDERSHIP-GENERATED OD MATRICES 
 

Another method of validating the model is to compare it 

with “official” ticket count data.  This approach will not detect 

ticket data integrity issues, but could flag logical errors in the 

model algorithm if they exist. 

 

Ticket Type AFC Model “Official” Difference 

Single/Return  2,331,589 2,457,162 5.1% 

Ten Trip  558,579 569,460 1.9% 

Monthly  3,266,408 4,020,667 18.8% 

Weekly  168,012 213,100 21.2% 

Total  6,324,588 7,260,389 12.9% 

TABLE 2: COMPARISON OF TICKET RIDERSHIP ESTIMATE 

MODEL VERSUS “OFFICIAL” RIDERSHIP COUNT 
 

Table 2 shows April 2019 total passenger counts from our 

model compared to an “official” count.  The official counts 

explicitly assume each monthly ticket is used for exactly 40 

trips, but our model suggests that number is closer to 33 trips.  

We had recently conducted a passenger survey that suggested 

monthly riders telecommuted on average twice a month (in the 

pre-COVID condition), implying monthly ticket utilizations 

closer to 36 trips.  We also had other information suggesting 

that somewhere around 2~5% of ticket activations may never 

reach the server, due to intermittent communication issues from 

user mobile devices, particularly affecting users of unlimited 

ride tickets.  The official ridership is inferred from ticket sales 

alone, which may have its own sources of errors.  For purposes 

of ridership estimation, we consider these differences to be 

wholly acceptable.  If we are eventually able to determine the 

sources of errors and measure their impacts, we can apply 

correction factors to the results, perhaps to both the model’s 

output and official ridership statistics. 

The discrepancy between the model and “official” count on 

pay-per-ride tickets is more problematic.  In theory, each ticket 

counts for one transaction/activation, and totals from both 

sources should tie out.  We are continuing to investigate this; 

we are currently unable to rule out either duplicates in official 

counts, or missing data from our download.  Importantly, these 

issues relate to practical implementation rather than defects in 

the theoretical concept or algorithm. 

 

3.7 Applying Model to COVID Ridership Estimation 
The design of this model utilizes the pattern of eTix user 

behaviour to estimate paper ticket usage.  Therefore, when a 

cliff-edge condition arises in travel demand, such as that 

occurred on March 15, 2020 when we entered a “New York 

State on Pause” COVID19 induced lockdown, this assumption 

no longer held true.  As nonessential employees began a 

prolonged period of working-from-home, rider behaviour prior 

to that date held little relevance to ticket usage after.  Thus, the 

model calibration must be “flushed” and the model re-

calibrated for post-COVID travel conditions. 

Due to the high level of granularity required of 

distributions used to estimate paper ticket passenger behaviour, 

and sharply reduced travel due to the lockdown, we thought 

conservatively that a six-month post-COVID sample period for 

observations (i.e. one pre-COVID month’s equivalent volume) 

of eTix activation data would be required before we could 

generate meaningful distributions for application to paper ticket 

sales data.  Whilst travel behaviour is continuing to evolve as 

parts of the economy is reopened, other indicators (including 

“official” ridership statistics, and turnstile utilization on the 

subway system) has indicated that ridership has stabilized at 

about 20% of pre-COVID levels.  The hour-by-hour ridership 

estimates are particularly critical for COVID response efforts 

because it gives us an early indication where potential exists for 

onboard social distancing to approach guideline capacity limits. 

We have retrieved all post-lockdown source data from the 

date range April 1 through September 30, 2020 and are 

currently working on re-calibrating the model using the post-

COVID ridership patterns. 

 

3.8 Connecting to Network Model for Arc-Loads 
Our next step in the development of this model is to 

connect the OD matrix, which is necessarily a point-to-point 

representation of travel demand, with electronic train schedule 

data now available, to essentially flow the traffic over the 

network using a methodology similar to [12,12].  Doing this 

accurately is particularly important in a commuter rail setting 

because of the preponderance of skip-stop and zone-express 

services.  Figure 18 shows the proposed process, where it is 

necessary to calibrate a “train choice” model based on journey 

time, headway between trains, and transfers (see, e.g. [14]).  

We are currently using a working draft model that distributes 

the hourly traffic based on elapsed minutes between successive 

departures that provide service to the specific destination, then 
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applying a positive or negative bias based on journey time 

relative to the daily average within that OD market. 

 

 
FIGURE 18: PHASE II BLOCK DIAGRAM SHOWING THE 

PROCESS TO ALLOCATE HOURLY TRAFFIC TO TRAIN 

STARTS AND THUS DETERMINE LINK-LOADS ON EACH TRIP  
 

The OD matrix provides a view of emerging markets that 

could be better served with skip-stop services, perhaps by 

adding a stop to existing non-stop zonal expresses, or by 

removing train-stops that do not serve any markets effectively.  

Matching OD traffic to service arcs would allow us to 

understand if the current service patterns are effective in 

serving or creating that travel demand.  It would also allow us 

to use data to inform day-to-day scheduling decisions such as 

number of railcars required on each zone-express train. 

 

3.9 Implication of Loadweigh and Camera Count Data 
Availability 
The target system recently announced [15] that 

approximately one-third of the electric railcar fleet have 

recently been modified to report continuously in real-time, via a 

wireless modem, the pressure required to inflate air suspension 

to a set level, which is an approximate measure of laden weight 

utilized by onboard systems to compute brake force required to 

decelerate the train at a specified rate.  This data has been 

utilized to infer passenger occupancy on a coach-level in real-

time, but the error margins are significant and may require 

frequent re-calibrations. 

Due to the inherent limitations of this approach, including 

the inapplicability to non-EPB (electro-pneumatically braked) 

rolling stock, work is currently ongoing (by others) to use 

computer vision algorithms to process image data gathered 

from the ten onboard security video cameras in each carriage to 

literally and automatically count passengers in real-time.  This 

data can be algorithmically combined with the loadweigh data 

to produce the most accurate loading estimates. 

When complete, these direct observations will be the best 

data on coach occupancies, and when combined with consist 

information, excellent daily train-by-train loading data.  

However, they provide no market intelligence in terms of 

customers’ ODs, transfers, ticket types, nights’ stay, repeat 

system usage, trip purpose, or passengers travelling together.  

Ticket data continue to be an important source of market 

information, although their role in inferring train loadings will 

necessarily become more limited.  We envision the current 

algorithm will be helpful to those railroads having advanced 

ticketing systems, but chose not to install onboard cameras with 

100% coverage for other reasons. 

 

 

4. CONCLUSION 
We described a novel method to estimate commuter rail 

station-to-station OD matrix at an hourly level of granularity, 

separately and independently for each day, using traditional 

ticket sales data, and usage data from electronic tickets.  We 

allocated the traffic to each train-start using a train-choice 

model and determined the correct direction for multi-ride 

tickets utilizing historical ridecheck data.  The basic idea is 

fairly straightforward: distributions of observable patterns are 

used to model unobservable ones.  Practical interpretations in 

choosing variables, mathematically describing likely customer 

behaviour for each ticket type, converting probabilities into 

whole riders, and relating ridership patterns to subtle but ever-

present minor schedule adjustments, are somewhat more 

complicated.  We hope that the thought processes outlined here 

contributes to the transport modelling community in 

demonstrating a fairly complex case of analysis applied to a 

niche market.  Business practices specific to commuter rail are 

generally not well understood outside of specialized 

practitioners, and we hope to shed some light for those who are 

not specialists in this classic transport mode.  This model can 

estimate post-COVID ridership once sufficient sample of travel 

habits are collected; necessary model re-calibration work is 

currently in progress. 
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