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ABSTRACT

Our niche method independently estimates hourly
commuter rail station-to-station origin-destination (OD) matrix
data each day from ticket sales and activation data from four
sales channels (paper/mobile tickets, mail order, and onboard
sales) by extending well-established transportation modelling
methodologies. This algorithm s features include: (1) handles
multi-pack pay-per-ride fare instruments not requiring
electronic validation, like ten-trip paper tickets “punched”
onboard by railroad conductors; (2) correctly infers direction-
ality for direction-agnostic ticket-types; (3) estimates unlimited
ride ticket utilization patterns sufficiently precisely to inform
vehicle assignment/scheduling; (4) provides integer outputs
without allowing rounding to affect control totals nor introduce
artifacts; (5) deals gracefully with cliff-edge changes in
demand, like the COVID19 related lockdown; and (6) allocates
hourly traffic to each train-start based on passenger choice.
Our core idea is that the time of ticket usage is ultimately a
function of the time of sale and ticket type, and mutual
transformation is made via probability density functions
(“patterns”) given sufficient distribution data. We generated
pre-COVID daily OD matrices and will eventually extend this
work to post-COVID inputs. Results were provided to
operations planners using visual and tabular interfaces. These
matrices represent data never previously available by any
method; prior OD surveys required 100,000 respondents, and
even then could neither provide daily nor hourly levels of
detail, and could not monitor special event ridership nor
specific seasonal travel such as summer Friday afternoons.
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1. INTRODUCTION

This paper describes a novel method to estimate commuter
rail station-to-station origin-destination (OD) matrix at an
hourly level of granularity (assignable to specific trains),
separately and independently for each day. This algorithm
combines and extends well-established transportation
modelling methodologies and applies it to a niche problem with
important practical implications that has nonetheless seen
limited attention from the expert community. Special features
of this algorithm includes:

e Handles multi-pack pay-per-ride fare instruments that do
not require electronic validation at the time of use, such as
a ten-trip commuter rail paper ticket that is “punched” by a
railroad conductor at the time of ride, with no electronic
record being made of ticket usage.

o Infers directionality for direction-agnostic ticket-types,
such as monthly tickets sold between pairs of stations.

e Sensitive to day-to-day changes in travel conditions, such
as weather, special events, and network disruption.

o Ability to deal with a cliff-edge sudden change in demand
or ridership patterns, such as one faced by commuter rail
operators following the COVID19 related lockdown.

o Estimate utilization patterns of unlimited-ride tickets in a
sufficiently sophisticated fashion to inform operations
planning decisions (e.g., vehicle assignment, scheduling,
stopping patterns, connections) in a useful way.

e Provides output in terms of whole numbers of passengers
for each OD pair during each hour, without allowing
rounding to affect overall control totals (e.g. daily total
ridership) whilst keeping the probability of each origin,
destination, and hour combination proportional to their
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fractional ridership estimate over the long term, such that
rounding artifacts do not appear in long-run average data.

e Allocates hourly traffic to each train-start (i.e. schedule
number) based on passenger choice.

Data processing capabilities to analyze ticket-sales data
this way had existed for approximately fifteen years (e.g. [1-
5]), however, conditions that generated the required input
datasets for a commuter railway (specifically relating to the
electronic ticket activation data) was unavailable until recently.
eTix data on the target system is equivalent to a 40% sample of
the overall ridership population; this large and dispersed sample
allows us to accurately estimate behaviours of the remaining
60%.

2. MODELLING METHODOLOGY

2.1 Input Data Description

This algorithm takes as input a series of different data
sources. Not typical for metro systems, but common on
mainline railways, is the existence of multiple sales channels
which issues different fare media and for which sales
transactions are recorded on different systems (e.g. Figure 1).
The target system has four main sales channels and those are
reflected in the input data streams:

FIGURE 1: DIVERSITY OF PAPER FARE MEDIA

Self-service ticket vending machines at stations and
ticket printers operated by station agents generate sales
transaction records in a centralized database which records the
two points between which the tickets are valid, type of ticket
(one-way, multi-trip, periodic unlimited ride, special discount),
time of sale, and a unique ticket identifier. Fare media, once
printed, are handled manually (visual inspection, ticket punch
cancellation) and no electronic records are generated at the
point-of-use. This is very different from a subway environment
where turnstiles provide electronic records at the point-of-entry.

Mobile tickets (eTix), which is a proprietary application
installed on the passenger’s smart phone, transmit over the
public cellular communications network sales transaction

records providing much the same information as the previous
source, but also, crucially, adds activation information detailing
when each ticket was used. Pay-per-ride (PPR) tickets must be
“activated” prior to use and generate a use record. Unlimited
ride tickets generate an activation record when the app is
opened for visual inspection, and do not generate additional
records even if the app is repeatedly opened and closed within a
time window approximating the maximum length of a trip.

Mail order tickets have a customer database that stores
standing orders from monthly ticket purchasers, and a refund
database that records returns of unused and unexpired tickets.

Onboard ticket sales generate a database detailing one-
way tickets and upgrades sold (e.g. off-peak to peak fare, or
extensions of ride).

2.2 Description of Fare Types

The target system has more than sixty ticket types
described in a detailed tariff document, however, for the
purposes of modelling travel behaviour, in most cases it is only
necessary to differentiate between four basic categories:
monthly commutation, weekly commutation, ten-trip, and a-la-
carte single/return tickets. PPR tickets are further subdivided
into peak, off-peak, intermediate, child, senior, family fare, and
special discount schemes. This distinction is only important in
certain cases, discussed later.

2.3 Key Assumptions

Prior to the introduction of eTix, it was impossible to
know, once a ticket is sold, when and how the customer
actually used it. At infrequent intervals, surveys are carried out
to determine how much monthly ticket holders utilize their
tickets, but there is no time-of-day nor day-of-week detail. The
eTix activation records provide a means to understand this at an
extensive level of detail—as well as when and how multi-ride
tickets are used in the wild. The eTix ridership comprises
approximately 40% of total ridership, although it varies by
ticket type, with more monthly tickets remaining on paper and
more PPR tickets sold as eTix.

It is necessary to assume that eTix passengers utilize their
tickets in approximately the same way as paper ticket holders.
We know from surveys that the demographic of paper ticket
holders trend older, but we have little reason to believe their
temporal travel patterns or frequency of use are on aggregate
significantly different from eTix users.

We also make the assumption that paper single tickets are
purchased immediately prior to use. It is difficult to verify this
assumption in any meaningful way because eTix passengers do
not have any point-of-sale issues (e.g. queuing, agent
involvement) that may require them to purchase tickets in
advance, and there are no discounts for advance-purchase
tickets. Based on anecdotal experience, we believe very few
single ticket users purchase their tickets in advance. (Not true
for unlimited ride tickets, and we account for that separately.)
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2.4 General Concept of “Lookback Windows”

It is useful to think of PPR tickets as inventories of trip-
coupons that are held by customers, which are cancelled upon
fulfillment of transportation. Indeed, historical accounting
practices reflect this tradition: tickets sold were carried as
liability on the company’s books (“transportation owed”), until
tickets were lifted and cancelled by traincrews, and physically
returned to the accounting department for booking as revenue
earned. Therefore, to understand the probability that a given
ticket would be cancelled today, it is necessary to model the
customer’s outstanding unused inventory of tickets. Because of
business process changes, revenue accrual today no longer
depend on the physical return of collected tickets, thus no
reasonable way existed to know when a paper ticket was used.

Figure 2 shows the cumulative fraction of ten-trip eTix
rides that were cancelled within N weeks of purchase.
Although technically these tickets are valid for six months, the
data shows 90% of all rides were consumed within ten weeks.
For processing time reasons, we limit the probability modelling
to 92-days of historical ten-trip sales data.

Weeks Since Purchase vs Cumulative Activations
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FIGURE 2: PERCENTAGE OF RIDES CONSUMED AS A
FUNCTION OF WEEKS SINCE PURCHASE OF TEN RIDE
ELECTRONIC TICKETS

A similar analysis examined round-trip eTix, where the
data showed 97.5% of return portions were collected within
seven days of purchase. We chose to limit the modelling to a
lookback window of 31-days.

Having observed the distribution of “days each ticket is
held by the customer” from the eTix data, the number of rides
taken today is actually just the sum product of {probability of
usage after N days}, and {number of tickets sold exactly N days
ago} during the lookback period. Figure 3 explains this
calculation graphically.

Conceptually this is a very simple calculation, but
numerous practical challenges exist: (1) it is necessary to
choose the categories within which we group the distributions
together, i.e. define appropriate strata within the 40%
uncontrolled sample; (2) it may be necessary to modify this
basic model to fit the usage and behaviour patterns for each
ticket type; (3) since results are probabilities and not observed
ticket usage, they can be very small decimals in a given market
during a given hour; (4) due to the sheer volume of data
required, computational processing time must be considered
when specifying the model. In the following sections, how this
basic concept is applied to each ticket type will be described.

# Tickets Sold on Day N

i N Days Ago
j 5 Days Ago
j 4 Days Ago
\
! 3 Days Ago I I
Ii 2 Days Ago IIIIII
ety 111
Days Held by Customer
FIGURE 3: BASIC CONCEPTUAL MODEL RELATING

TICKETS EXPECTED TO BE CANCELLED TODAY AND
CUSTOMER INVENTORY OF TICKETS

Tickets Likely Used Today

Probability of Use, After Holding Period of N Days

2.5 Ten-Trip Ticket “Weeks Since Purchase” Model

We know from past experience that ten-trip tickets are
generally utilized by customers who have occasional needs to
travel between fixed points (e.g. between their home station and
a place where they occasionally do business). For this reason,
we believe their date and time of travel are driven by when they
need to do business, rather than strictly based on how long they
have been in possession of fare media. However, we also know
that customers try to use their tickets sooner rather than later,
due to their inventory carrying costs, so the days-held concept
will still apply.

To provide a compromise model, we chose to first compute
the number of paper tickets expected to be utilized during the
current week, based on a distribution of weeks since initial
purchase. For ten-trip tickets, this distribution varies subtly by
ticket subtype (peak, off-peak, intermediate, and senior), as
Figure 2 shows, because off-peak and senior tickets (valid off-
peak only) are less likely to be used by occasional commuters
(e.g. attorneys with occasional Manhattan court appearances).

Having computed number of tickets used during this week,
the model then sprinkles the ticket usages over the course of the
week based on a combined distribution of day-of-week and
time-of-day, by ticket subtype. Figure 4 is a representative
illustration how the usage of tickets differs by time-of-day, day-
of-week, and subtype. For instance, fewer peak tickets were
used on Fridays compared to Wednesdays.
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FIGURE 4: HOUR-OF-DAY DURING WHICH TEN TRIP
TICKETS WERE ACTIVATED FOR PEAK AND OFF-PEAK
TICKETS ON WEDNESDAYS, FRIDAYS, AND SATURDAYS
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Note that this model does not depend on origin and
destination station information provided in the ticket data
because we found that time of travel is not significantly
affected by geography. This is not true in intercity travel where
a journey time comprises a significant portion of the
passenger’s day (therefore giving rise to “sleeper” and “mid-
afternoon express” type services), but in a commuter
environment our data shows that this effect is minimal.

2.6 Return (Round-Trip) Ticket Model

It is a commonly-held belief within the commuter rail
industry that round-trip passengers in essence fall within two
distinct markets: a day-return market that tends to leave early
and come back late, and a period-return market where two trips
are practically independent in terms of departure time, where
the return ticket is merely a device to obtain discounted fares or
avoid the inconvenience of another transaction. The latter
market tends to be more elastic as it is predominantly driven by
leisure travel. It is not entirely obvious where one market ends
and the other begins, particularly when the outbound trip falls
on a Friday or Saturday. We thus sought to answer this
question with data.

Figure 5 shows a typical pattern. Those who travel
outbound in the AM peak tend to return in the PM peak,
although some return during the AM peak the following day.
Those who start their trip midday usually return either during
the PM peak or late evening hours. Those who travel outbound
in the PM peak typically return in the late evening, the
following AM peak, or the following PM peak. Generally
speaking, those patterns held steady for Mondays through
Thursdays, but a distinct pattern is seen each for Friday,
Saturday, and Sunday. Finding a distinct pattern for those three
days is not uncommon [6]. In each case, these patterns peter
out after about 48 hours.

Return Trip Hour by Outward Trip Hour (Tue)
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FIGURE 5: HOUR OF RETURN TRIP AS A FUNCTION OF
HOUR OF OUTWARD TRIP (AM PEAK, MIDDAY, AND PM
PEAK) IN PAY-PER-RIDE RETURN TICKETS

For this model, we therefore chose a segmented approach.
For paper tickets purchased today and yesterday, we distribute
the time of return trip based on day-of-week and time-of-day
when the ticket was sold (i.e. a proxy for when outbound trip
was taken). We then apply a filter to discard expected return
travel that doesn’t occur today (such that tickets bought

yesterday and used for return travel yesterday doesn’t interfere
with today’s results). We call this portion the “48-hour model”.

Although we do have peak and off-peak information in the
sales records, we decided not to use that information for two
reasons: (1) because we distribute expected ticket usage hour-
by-hour, that distribution should capture the peak/off-peak
distinction anyway, because user behaviour is reflected in the
distribution; (2) peak tickets are valid during off-peak periods,
and off-peak tickets are often used during peak periods upon
payment of appropriate step-up charges. Although we could in
theory process all of this data (correlating paper ticket sales
with onboard sales), it makes the model unnecessarily complex.

For tickets purchased earlier than yesterday, we apply the
basic “days away” logic by day-of-week (because more
passengers stay two or more nights when the outbound travel
occurs on a Friday) to determine the fraction of tickets expected
to be used today. Once the expected daily total ticket usage is
found, we then sprinkle that based on the distribution of return
trip hours from all return portions of round-trip tickets where
passengers stayed at their destination for at least two days. The
use of this distribution, rather than a general distribution of
hour-of-day in which tickets are used, is significant, because we
found that the use of return portions after at least one night’s
stay is likely to be biased towards earlier in the day (see Figure
6). We call this the “period-return model”.

Time Distribution of Activations by Journey Type

% of Total Tickets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour When Ticket Activated

~—#—AllOutbound Trip ~#=Period Return Outbound Trip Period Return Trip == 24-Hour Return Trip

FIGURE 6: HOUR OF RETURN TICKET USAGE AS A
FUNCTION OF OUTBOUND/RETURN PORTIONS AND DAY
RETURN VERSUS PERIOD RETURN

In the off-peak, two passengers travelling together often
purchase a return ticket and use both portions for the same
journey (permissible). This shows in the data as activation of
both portions within minutes of one another, and requires the
origin and destination records to be swapped for the return
portion.

The 48-hour model covers 87% of the market overall for
us, but on Fridays its coverage drops to 78%. Both models are
important in providing a complete view of travel behaviour.

2.7 Monthly Ticket “Day-of-Week Zone Hour” Model
Initially we thought that geography might affect unlimited-
ride ticket utilization, as passengers with longer commutes
(some in excess of two hours each way) might be expected to
utilize their monthly ticket less frequently or intensively than
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someone whose commute is only a half-hour long. Figure 7
shows this is not really the case.

We knew from prior work [7] that the number of weekdays
and holidays in each month has a significant and measurable
impact on monthly ticket utilization, we therefore model
monthly ticket utilization as a two-stage problem: (1) given
today is, e.g. a Friday in January, what is the fraction of
monthly ticket issued that I would expect to “see” on the
system; (2) given that a specific ticket is seen today, how many
trips do we expect that ticket to redeem? This is in contrast to a
more traditional approach that might measure average trips per
month. Multiplying the number of tickets issued by both of
these factors provides total rides expected to be consumed
today by holders of these tickets. These factors are computed
separately for each month, and for each day of the week. By
doing this, the impact of holidays (e.g. Martin Luther King day,
July 4, Thanksgiving week, Columbus Day, etc., all of which
have distinct levels of commuter ticket usage) are automatically
and specifically accounted for. In determining these factors it
was necessary to enumerate count of each daytype within each
month, requiring some complex calendar maths.

Days Active per Monthly Ticket by Zone
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FIGURE 7: DAYS MONTHLY TICKETS ARE SEEN TO BE
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Monthly tickets are sold beginning on the 25th of the prior
month, and continue to be sold up until around the 15th. The
lookback window for monthly tickets is therefore 38 days, and
a filter is applied to find only those tickets sold relevant to the
current month. In addition to ticket vending machine data,
sales data from mail order tickets are also merged in. eTix
monthlies are treated separately because we can directly
observe activations of those “tickets”.

Figure 8 shows two interesting phenomena: (1) morning
commutes begin earlier for those living further away from
downtown (i.e. Zones 09/10); (2) on the system’s extremities
where service frequency is sparse, afternoon ticket usage is tied
to specific popular train departures (Zone 10). Although we do
not need to model ticket usage frequency as a function of
geography, we need it for accurate estimation of hour-of-day.

Having determined how many rides would be redeemed
today (preserving origin-destination information in sales data),
we sprinkle these rides amongst the 24-hour day based on
relevant hourly distributions for that specific day-of-week, and
origin and destination fare zones. The day-of-week is included

because temporal travel patterns are different for Friday,
Saturday, and Sunday, even amongst season ticket holders.

% of Monthly Trips by Zone by 15 Mins

18%

=) Zone10 ~ —e—Zone09 Zone 05 Zone 02

£ 16%

=

S 14%

=2

> .2 12%

o=y

S 210% 1t

22 o% ! j‘

= 4% U

5 2% g R LRR

= L0 Y - .

= oy om z :k o aliek
000102030405060708091011121314151617 18192021222324

Time of Day
FIGURE 8: PERCENTAGE OF TRIPS TAKEN BY MONTHLY
ETIX HOLDERS AS A FUNCTION OF TIME-OF-DAY, BY ZONE

Despite the aggregation of geography from station-to-
station to the larger farezone-level (one fare zone contains
multiple stations), there were nonetheless some OD zones on
specific days of the week for which no eTix activations were
observed at all. In those cases, the estimated paper ticket usage
risks getting lost unless there is a “residual” process to recover
them. In cases where no time-of-day pattern could be found
(~0.2%), we divide them according to a generic zone-
independent hour-by-hour activation distribution of all monthly
tickets.

2.8 Weekly Ticket Model

The weekly ticket model is basically identical to the
monthly model, except that the “lookback period” is 12 days,
and utilization factors are separately computed for each of the
52 weeks of the year.

2.9 Origin-Destination Model Structure

At this point, it is useful to review the estimation model’s
overall structure. In summary, eTix sales and activation data
are used to generate various distributions, separately for each
ticket type, representing how the tickets that were sold, would
end up being used. These patterns determine the number of
rides redeemed, and the date and time of such rides relative to
when the tickets were sold or the ticket’s validity period. These
patterns do not determine the ticket’s geography, which is
recorded at the time of sale and typically not altered except
through on-board extension-of-ride supplemental fares.

Separately, sales records from various non-mobile sales
channels (from which ticket usage cannot be observed) were
combined, summarized, and multiplied by these distributions
based on variables relevant to each ticket type. This produces a
daily hour-by-hour, station-by-station partial OD matrix that
represents the probability that tickets with that OD would be
used during that hour on that day. This is combined with sales
data for single ride tickets and outbound portions of return
tickets, which represent actual ODs observed. Figure 9 shows a
high-level block diagram.

Probabilities are usually decimals, and fractional
passengers are not necessarily useful in transport planning. In
commuter rail, small ODs at unsociable hours have very sparse
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demand, seeing perhaps one or two trips a month, translating
into 0.03 trips per hour per day. If a one-way ticket sale was
seen during that hour for that OD, then we know for sure that
someone did travel that day, but a method is still needed to
definitively assign that one probabilistically estimated marginal
passenger to one specific hour, to represent the possibility that
someone perhaps did travel that day, but this must be done in
such a way as not to affect either long-term averages for that
specific hour in that OD, nor to affect daily “roll-up” control
totals. This is the “Fractional Passenger Dithering Process”.
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Ticket Sales Ticket Sales
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of Return
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FIGURE 9: PHASE | BLOCK DIAGRAM SHOWING HOW
PARTS OF THE TICKET RIDERSHIP ESTIMATION MODEL
WORK TOGETHER WITH DIFFERENT DATA SOURCES

Figure 10 represents the solution space for the system’s
OD matrix during the seventeenth hour for a normal weekday.
Grey pixels represent OD pairs that contain nonzero values
representing less than one passenger. Black pixels are more
than one passenger, and white pixels are either invalid ODs
(meaning tickets are not sold for that market) or an OD having
exactly zero passengers assigned.
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FIGURE 10: GRAPHICAL REPRESENTATION OF TYPICAL
PROBABILISTIC DAILY-BY-HOUR COMMUTER RAIL OD
MATRIX—GREY CELLS REPRESENTS BETWEEN ZERO AND
ONE PASSENGERS DURING ANY ONE GIVEN HOUR

Commuter rail demand is so focused on travel in and out of
important urban centres, including between central business
district and suburbs, that even during height of the rush hour
many markets show less than one daily passenger per hour.
(Although, it should be noted that with 4,646 valid OD pairs,
and about 250,000 trips per weekday, the average hourly

ridership per OD market assuming completely uniform
distribution would only be 2.24 passengers; these issues are
inherent in modelling low density traffic.)

2.10  Error Diffusion for Passenger Counts

The algorithm for finding individual integer solutions for
each cell that fit within the overall ridership picture borrows
from an established methodology in digital audio and image
processing called “dithering” [8]. Dithering is the intentional
addition of noise (random or systematic) to prevent large scale
quantization errors when converting from a continuously
variable source to one with discretely defined levels. Both
truncating (using only the integer part of output) and 4/5
rounding leads to this predictable and repetitive form of error,
and won’t preserve overall control totals either within margins
of the matrix, or across multiple days or hours of OD data.

Our error diffusion algorithm treats the OD matrix
sequentially, sorting fractional outputs by origin station,
destination, and hour-of-day.  Consequently, accumulated
errors are in effect first moved to adjacent hours, and then to
adjacent destinations if necessary. The algorithm keeps track
of errors from truncating each non-integer value, and augments
the output by one passenger in that OD-hour combination when
a specific criterion is met. To keep control totals constant, it is
important to augment exactly one market by one passenger for
each 1.000000 worth of accumulated truncation errors. This
approach is conventionally termed ‘“bucket rounding”.
However, we must not simply augment markets within which
the 4/5 rounding condition is reached, because doing so could
lead to systematic and repetitive errors, which would be visible
in the data and could artificially inflate ridership significantly in
those markets over the long term, when, for instance, a whole
month’s worth of OD matrix data is summed.

One approach to solving this issue is to essentially
randomize the point at which accumulated errors are added to
the market, such that overall probability of “adding one” is
proportional to the contribution of truncation errors from each
market. Although this would lead to proper outputs on average,
it would not guarantee that daily control totals would be
maintained, and that the results would not be deterministic so
model runs would not be reproducible. This approach is
unacceptable for transport planning models and is also known
to produce undesirable artifacts in image and audio processing,
causing random noise (sometimes swamping actual data)
especially in slowly varying, low-amplitude regions like
intermediate ridership on the railroad’s branches.

We therefore developed an algorithm for deciding when to
“add one” that varies on a repeating, but very long cycle that
also contains shorter cycles, but the two cycles are set up to
drift in and out of phase. It is the mathematical equivalent of
having a cam that rotates over a number of followers, but the
frame itself is also rotating much more slowly, such that the
entire assembly does not end up in the same position until the
lowest common multiple of the two cycles are reached. The
shorter cycles guarantee that data artifacts would be evenly
distributed between destinations within each origin market,
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whereas the longer cycles ensure that artifacts are evenly
distributed between days and months across each OD market.
To accomplish this, we chose prime numbers to drive divisors
in establishing when “add one” occurs within each 1.000000 of
accumulated errors, and the probability of adding one remains
proportional to each market’s contribution to cumulative error.

CulErr = 0; LastCulErr = 0;
Param2 = 0; Param2Cycle = 67;
Param4 = 0; Paramd4Cycle = 1009;
Param3Date = ((RunDate Mod 7) / 7 +
(RunDate Mod 31) / 31 + (RunDate Mod 365) / 365);
Param3 = Param3Date - Int(Param3Date);
While OD_hr Markets Remaining do {
IntTrips = Int(EstTrips);
ResidualTrips = EstTrips - IntTrips;
CulErr = CulErr + ResidualTrips;

//Prime no
//Prime no

Param2 = (Int(CulErr) Mod Param2Cycle) / Param2Cycle;
Param4 = (Int(CulErr) Mod Param4Cycle) / Param4Cycle;
SumParams = Param2 + Param3 + Paramé;
Threshold = SumParams - Int (SumParams);
If ((LastCulErr < Threshold + Int(LastCulErr)) and
(CulErr >= Threshold + Int(LastCulErr))) or
((LastCulErr < Threshold + Int(CulErr)) and
(CulErr >= Threshold + Int(CulErr))) Then
NewTrips = IntTrips + 1
Else
NewTrips = IntTrips;
If NewTrips <> 0 Then Writeout (NewTrips, database);

LastCulErr = CulErr; RetrieveNextRecord;

}
FIGURE 11: PSEUDOCODE FOR
PROBABILISTIC PASSENGER COUNT DATA

QUANTIZING

As this is the most complex aspect of this algorithm, the
pseudocode necessary to implement the dithering algorithm is
provided in Figure 11. This algorithm could be applied to any
set of sequential transport planning data that needs to be
quantized while distributing truncation errors to nearby buckets
in a predictable and proportionate-probability fashion.

2.11  Directionality Issue

After full implementation, we discovered a directionality
issue. Multi-ride tickets and passes on commuter rail are sold
such that they are valid for travel in either direction between
two defined points. Passengers therefore tend to flip origins
and destinations whimsically. On a daily level, the issue
washes out on average because commuter traffic tends to be
directionally balanced. On an hourly level, however, e.g.
during the morning peak, a suburban station such as Irvington
may originate 95% of the total suburb-CBD traffic, and
terminate 5% (due to the proximity of a small business park).
But about 60% those travellers held nominally inbound tickets,
whilst the other 40% held outbound tickets. Fractions of
inbound and outbound passengers by hour must thus be
determined independently of origin and destination stations
shown on the ticket.

Luckily, due to a ridership census (see Section 3.6 below),
a dataset existed for the target system that provided boarding,
disembarkation, and leave load counts for each scheduled train.
This data was not easy to collect, as it involved stationing one
surveyor per coach to check ride the entire trip gathering data
for all 800 daily train starts, separately for weekday, Saturday,
and Sunday. The entire data collection effort took place over
three calendar years.

This data is fed into a standard “frataring” (iterative
proportional fitting, IPF, see e.g. [9]) algorithm to synthesize a
directionally-correct train-level OD matrix (albeit “smeared”
over the three-year data collection period, during which many
schedule adjustments took place), summarized by origin-
destination and hour, then expressed as an inbound/outbound
fraction. This fraction (where it exists) is then used allocate the
observed passengers in the main OD model output, in each
origin-destination market for each hour. This process preserves
daily passenger-count and ticket-type information by hour from
the ticket data, but reallocates the fraction of inbound/outbound
passengers by hour such that directionality is more accurate,
applying only to directionally-ambiguous ticket types. A
summary is provided in Figure 12, represented by the “Fratared
Onffs by Hr” canister in Figure 9.

Look up Compute -
Departure Time at DirectionSplitby ——  Fratared
GTFS Data each Origin 0D, Dep. Hour Onffs by Hour

v
“Fratar” each To Phase 1
Train-by-train Train to Full OD

Onff Counts Matrix Estimate

FIGURE 12: PHASE IA BLOCK DIAGRAM SHOWING HOW
TRAIN-BY-TRAIN ONFF COUNTS ARE USED TO INFORM
DIRECTIONALITY OF TICKET-SALES INFERRED TRAFFIC
(GTFS = GENERAL TRANSIT FEED SPECIFICATION)

3. RESULTS AND DISCUSSION

3.1 Practical Implementation

We implemented this model in Microsoft Access 2000
using a combination of the Jet database engine and the built-in
Microsoft Visual Basic for Applications (VBA) compiler.
There were obviously many tools for this task that may have
been better (e.g. Oracle database, Python script, “R” analytics
software, SAS, or cloud-based tools), however, newer tools
either took too long to set up (because it would involve the I.T.
department) or would have a learning curve (due to existing
skillsets of current personnel), that we decided it was faster to
work with older tools that we know we could work with
reliably and accurately.  When developing this type of
algorithms, it is more important not having to doubt and
double-check that the tool is performing your intended
commands, than to have a theoretically elegant solution that
may require experimenting with the tool as opposed to focusing
on the algorithm.

One of the practical limits with this toolset is that largest
table that could be handled is 2 GB in size. This means eTix
sales, activation, and ticket vending machine data must be
exported from the enterprise database in two-month chunks.
This was not a terrible handicap, as we simply read in relevant
datasets from multiple files during the first stage of processing.
This has the advantage of being able to discard in advance
(with program code) data records not required during the
current stage of processing, speeding up query execution in the
more complex parts of the model. For instance, the ten-trip
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model pre-processor must read in 92 days’ worth of contiguous
ticket sales data from numerous source files, but discard all
sales transaction that doesn’t concern ten-trip tickets,
dramatically reducing the data from 4.5 million records (per
quarter) to ~85,000 records. This is a common technique in big
data processing [10] from an era when modern computer tools
were not widespread.

3.2 Execution Time Performance

This model runs in three stages: (1) compute directionality
factors, i.e. “frataring”; (2) summarize required information
from eTix sales and activation data into distributions used to
drive the model, called the “calibration stage”; (3) apply
distributions to synthesize an OD matrix for a given day,
termed the “execution stage”. Table 1 below shows the time

required to run all of 2019’s data.

Phase Model Step Run Time Runs Req’d
Frataring Directionality 1 Min 30 Secs 1
Calibration | Round-Trip 3 Minutes 16

Ten Trip 15 Seconds 12
Monthly 3 Mins 30 Secs 18
Weekly 5 Seconds 18
Execution | Pre-Processing | 2 Minutes 365
Single/Return 4 Minutes 365
Ten Trip 1 Min 15 Sec 365
Monthly 5 Seconds 365
Weekly 3 Seconds 365
Mobile Ticket 45 Seconds 365
Dithering 20 Seconds 365

TABLE 1: MODEL RUN-TIME PERFORMANCE STATISTICS

Execution time was timed on a Core 2 Q8300 at 2.5 GHz
and 8 GB of RAM (a twelve-year-old computer), connecting to
local databases residing on an external USB hard drive.
Execution time is actually a critically important part of any
transportation model’s performance, particularly in applications
involving big data. 1f model calculations are too slow, planners
will not be able to do scenario analysis and will simply not use
it to inform decision making, which is not useful.

Total time requirements of 10 minutes per day’s worth of
data after calibration implies the entire year could be run in
approximately 60 hours. Whilst slower than ideal, it is well
within the range that model outputs can be considered useful.
Some models take many hours to run a single day’s worth of
data, which would be far less useful.

3.3 Sample Results

OD matrices can be difficult to present in tabular form.
Classic output shows origins on one axis and destinations on
the other, looking somewhat like mileage tables appended to
old-fashioned highway atlases, or fare tables in commuter rail
timetables.  Representing an hourly OD matrix is nearly
impossible, as it would require three basic dimensions (O, D,
and hour) to be displayed simultaneously. This could be done
as computer animations cycling data through each hour, but
that might not be analytically fruitful. Summary views would

have to be developed from this database based on service
planning questions being asked.

Figure 14 shows the whole-day OD matrix for the Hudson,
Harlem, and New Haven Divisions (including Branches) in a
colour-coded way, with station codes along both axes running
from south to north then onto branches, left-to-right and top-to-
bottom. The sheer domination of Grand Central Terminal is
readily apparent; however, the Hudson Line graphic also shows
two stations of secondary importance (Yonkers and Marble
Hill) that connects strongly with virtually every other station on
the line; tellingly, those were stations that received off-peak
diesel express service during 1994~2012. This is the sort of
insights that inform service planning when drilled down into
the hourly level whilst contemplating which trains could make
additional stops to provide more journey opportunities where
demand exists in temporal and geographic space, even if it
doesn’t necessarily tell us the causal directionality.

Hudson Division (Monday 4/1/2019)
8] 012 [ 6] 182022242628 30 32 34 36 38 43 46 48 50 52 53 56 57 58

Marble Hill Yonkers
Harlem Divisi

FIGURE 14: SAMPLE VISUALIZATIONS OF ALL-DAY O
MATRICES FROM TICKET RIDERSHIP ESTIMATION MODEL

The Harlem Line graphic reveals suburban hubs at
Fordham and White Plains.  Melrose appears strongly
connected with stations south of White Plains but not well
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connected with others. This could be a function of the existing
service plan or an indicator of underlying travel demand.

On the New Haven Line, Stamford, Greenwich, Norwalk,
and Fordham show strong connections with all other stations,
affirming our understanding of current travel patterns.

3.4 Marginal Summaries

One way of visualizing and utilizing OD data is to flow it
over a network model to determine link-loads and use those
“load profiles” to make service decisions. At this time, the
target system does not have a network model, but it is
nonetheless possible to understand passenger loads along a line
(although not a specific service route) by sorting results by
station location, then integrating boardings and disembarkations
at each station to determine onboard loads. This analysis is
sometimes termed “marginal” analysis because it requires
summing data both down and across the OD matrix, with the
results often shown in margins of the table.

Figure 15 shows load profiles of the three lines attributable
to those holding single and return tickets. The peak load points
in those cases were not actually near the central business
district, because non-CBD ridership tends to heavily favour
pay-per-ride tickets. When these results are combined with
data from the unlimited ride ticket model, the peak load point
shifts substantially towards the CBD.

Hudson Line Northbound 11/30/2018

! Hudson Line !

Today's Pay-per-Ride Passengers

Today's Pay-per-ide Passengers
v a2 o 9w 3

FIGURE 15: NORTHBOUND PAY-PER-RIDE PAPER TICKET
LOAD PROFILES FOR ALL THREE LINES

3.5 Graphic Representation

One original motivation of developing this model is to
provide a graphical representation of OD travel demand on the
target system. Figure 16 shows a map-based representation of
the OD matrix. Because the travel pattern is so dominated by
travel to CBD, this visualization turned out not to be
analytically informative unless filters were implemented. We

are currently working with a vendor to develop a web
application that would allow users to select how they want to
visualize this data, which would fully unlock the analytical
value of these ridership estimates.

FIGURE 16: MAP OF THE SERVICE TERRITORY SHOWING
RELATIVE DEMAND DENSITIES OF ALL OD PAIRS

3.6 Model Verification and Validation

Validating this model, like other big data analytical results,
is practically impossible. In theory, results derived from big
data sources should be 100% accurate provided the analytical
algorithm is implemented correctly. However, many issues can
arise in practice, including corrupted and missing data (often
due to field communication issues with data gathering devices),
data misinterpretation, etc. Data gathered from transport
systems typically must travel over code lines (or ethernet, or
wireless networks) subject to all sorts of weather-related
disruptions; systems often have different designs for dealing
with code line down conditions and can error-correct or re-
transmit to different extents. Ticket sales data are amongst the
most reliable field-collected data because they involve financial
transactions where errors are not tolerated by either the
company or customers.

The type of algorithm described here is particularly
problematic because it relies on estimation to deal with
information that the equipment does not collect. Short of
manually collecting a very large sample (which is impractical,
and in any case would be subject to data collection errors),
there is basically no way to verify the outputs of this model.

We came up with two different approaches to validate the
model to some extent. The system had performed an origin-
destination survey (perhaps better termed a “Census”) several
years ago with more than 100,000 respondents and a 40% total
population response rate [11]. Comparing model results with
the survey should provide some level of assurance. Although
this sample size sounds very impressive, the reality in
commuter rail is that CBD-based travel so dominates the traffic
pattern that 5% of total ridership accounts for the bottom 72%
of OD markets (in this case, each market accounts for fewer
than 50 daily passengers). Attempting to ascertain accurate
ridership counts in these markets using a sample survey
methodology is practically impossible.

Figure 17 shows the comparison between survey data and
four days’ worth of model output. The model is fairly
internally consistent, but shows some level of deviation from
survey data. On average, the survey reports ridership that is 5%
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higher, but there are some notable exceptions. Nonetheless, the
curve fit shows very good correlation with R2 values in excess
of 0.93 in all cases. We believe some visible deviations are due
to errors in the survey, rather than issues with the model.
However, based on available data, there can be no definitive
conclusion one way or another.

OD Survey (2017) versus AFC Model (2019)

14,000 ‘

3
13,000 20190401

" ® 20190409

12,000
[ ] 20190320

11,000
X 20190418

10,000
—— Linear (20190401)

9,000
—— Linear (20190409)

8,000

— Linear (20190320)
7,000 &

—— Linear (20190418)
6,000

5,000

y=1.0617x-2.2058
R?=0.9381

4,000

3,000
y=1.0471x-2.3954
R?=0.9385

2,000

y=1.0665x - 2.6868
R?=0.9405

1,000

© 9 9 g 9 2 2@ 9 g g9 @ 9 9 g 9
8 8 8 8 8 8 8 8 &8 8 8 8 8 8
8§ 8 8 8 8 § 8§ &8 8 &8 8 8 8 &
4 & ® § B8 6 N ©® 6 S o & ®

aaaaa

y=1.0669x-2.4929
R?=0.9644

FIGURE 17: CORRELATIONAL ANALYSIS OF OD SURVEY
DATA WITH TICKET RIDERSHIP-GENERATED OD MATRICES

Another method of validating the model is to compare it
with “official” ticket count data. This approach will not detect
ticket data integrity issues, but could flag logical errors in the
model algorithm if they exist.

Ticket Type AFC Model “Official” Difference
Single/Return 2,331,589 2,457,162 5.1%
Ten Trip 558,579 569,460 1.9%
Monthly 3,266,408 4,020,667 18.8%
Weekly 168,012 213,100 21.2%
Total 6,324,588 7,260,389 12.9%

TABLE 2: COMPARISON OF TICKET RIDERSHIP ESTIMATE
MODEL VERSUS “OFFICIAL” RIDERSHIP COUNT

Table 2 shows April 2019 total passenger counts from our
model compared to an “official” count. The official counts
explicitly assume each monthly ticket is used for exactly 40
trips, but our model suggests that number is closer to 33 trips.
We had recently conducted a passenger survey that suggested
monthly riders telecommuted on average twice a month (in the
pre-COVID condition), implying monthly ticket utilizations
closer to 36 trips. We also had other information suggesting
that somewhere around 2~5% of ticket activations may never
reach the server, due to intermittent communication issues from
user mobile devices, particularly affecting users of unlimited
ride tickets. The official ridership is inferred from ticket sales
alone, which may have its own sources of errors. For purposes
of ridership estimation, we consider these differences to be
wholly acceptable. If we are eventually able to determine the
sources of errors and measure their impacts, we can apply
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correction factors to the results, perhaps to both the model’s
output and official ridership statistics.

The discrepancy between the model and “official” count on
pay-per-ride tickets is more problematic. In theory, each ticket
counts for one transaction/activation, and totals from both
sources should tie out. We are continuing to investigate this;
we are currently unable to rule out either duplicates in official
counts, or missing data from our download. Importantly, these
issues relate to practical implementation rather than defects in
the theoretical concept or algorithm.

3.7 Applying Model to COVID Ridership Estimation

The design of this model utilizes the pattern of eTix user
behaviour to estimate paper ticket usage. Therefore, when a
cliff-edge condition arises in travel demand, such as that
occurred on March 15, 2020 when we entered a “New York
State on Pause” COVID19 induced lockdown, this assumption
no longer held true. As nonessential employees began a
prolonged period of working-from-home, rider behaviour prior
to that date held little relevance to ticket usage after. Thus, the
model calibration must be “flushed” and the model re-
calibrated for post-COVID travel conditions.

Due to the high level of granularity required of
distributions used to estimate paper ticket passenger behaviour,
and sharply reduced travel due to the lockdown, we thought
conservatively that a six-month post-COVID sample period for
observations (i.e. one pre-COVID month’s equivalent volume)
of eTix activation data would be required before we could
generate meaningful distributions for application to paper ticket
sales data. Whilst travel behaviour is continuing to evolve as
parts of the economy is reopened, other indicators (including
“official” ridership statistics, and turnstile utilization on the
subway system) has indicated that ridership has stabilized at
about 20% of pre-COVID levels. The hour-by-hour ridership
estimates are particularly critical for COVID response efforts
because it gives us an early indication where potential exists for
onboard social distancing to approach guideline capacity limits.

We have retrieved all post-lockdown source data from the
date range April 1 through September 30, 2020 and are
currently working on re-calibrating the model using the post-
COVID ridership patterns.

3.8 Connecting to Network Model for Arc-Loads

Our next step in the development of this model is to
connect the OD matrix, which is necessarily a point-to-point
representation of travel demand, with electronic train schedule
data now available, to essentially flow the traffic over the
network using a methodology similar to [12,12]. Doing this
accurately is particularly important in a commuter rail setting
because of the preponderance of skip-stop and zone-express
services. Figure 18 shows the proposed process, where it is
necessary to calibrate a “train choice” model based on journey
time, headway between trains, and transfers (see, e.g. [14]).
We are currently using a working draft model that distributes
the hourly traffic based on elapsed minutes between successive
departures that provide service to the specific destination, then
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applying a positive or negative bias based on journey time
relative to the daily average within that OD market.

- Allocate Trips to
Dalh{OD Train No. by Rider
Matrix by Convenience

| i

Generate Daily
Network Schedule
with Transfers

FIGURE 18: PHASE Il BLOCK DIAGRAM SHOWING THE
PROCESS TO ALLOCATE HOURLY TRAFFIC TO TRAIN
STARTS AND THUS DETERMINE LINK-LOADS ON EACH TRIP

Join OD Traffic to
Eligible Trains

Loadings by
0D, Location,
Train No.

Join OD Traffic to
Train Schedule

GTFS Data

The OD matrix provides a view of emerging markets that
could be better served with skip-stop services, perhaps by
adding a stop to existing non-stop zonal expresses, or by
removing train-stops that do not serve any markets effectively.
Matching OD traffic to service arcs would allow us to
understand if the current service patterns are effective in
serving or creating that travel demand. It would also allow us
to use data to inform day-to-day scheduling decisions such as
number of railcars required on each zone-express train.

3.9 Implication of Loadweigh and Camera Count Data

Availability

The target system recently announced [15] that
approximately one-third of the electric railcar fleet have
recently been modified to report continuously in real-time, via a
wireless modem, the pressure required to inflate air suspension
to a set level, which is an approximate measure of laden weight
utilized by onboard systems to compute brake force required to
decelerate the train at a specified rate. This data has been
utilized to infer passenger occupancy on a coach-level in real-
time, but the error margins are significant and may require
frequent re-calibrations.

Due to the inherent limitations of this approach, including
the inapplicability to non-EPB (electro-pneumatically braked)
rolling stock, work is currently ongoing (by others) to use
computer vision algorithms to process image data gathered
from the ten onboard security video cameras in each carriage to
literally and automatically count passengers in real-time. This
data can be algorithmically combined with the loadweigh data
to produce the most accurate loading estimates.

When complete, these direct observations will be the best
data on coach occupancies, and when combined with consist
information, excellent daily train-by-train loading data.
However, they provide no market intelligence in terms of
customers’ ODs, transfers, ticket types, nights’ stay, repeat
system usage, trip purpose, or passengers travelling together.
Ticket data continue to be an important source of market
information, although their role in inferring train loadings will
necessarily become more limited. We envision the current
algorithm will be helpful to those railroads having advanced
ticketing systems, but chose not to install onboard cameras with
100% coverage for other reasons.

11

4. CONCLUSION

We described a novel method to estimate commuter rail
station-to-station OD matrix at an hourly level of granularity,
separately and independently for each day, using traditional
ticket sales data, and usage data from electronic tickets. We
allocated the traffic to each train-start using a train-choice
model and determined the correct direction for multi-ride
tickets utilizing historical ridecheck data. The basic idea is
fairly straightforward: distributions of observable patterns are
used to model unobservable ones. Practical interpretations in
choosing variables, mathematically describing likely customer
behaviour for each ticket type, converting probabilities into
whole riders, and relating ridership patterns to subtle but ever-
present minor schedule adjustments, are somewhat more
complicated. We hope that the thought processes outlined here
contributes to the transport modelling community in
demonstrating a fairly complex case of analysis applied to a
niche market. Business practices specific to commuter rail are
generally not well understood outside of specialized
practitioners, and we hope to shed some light for those who are
not specialists in this classic transport mode. This model can
estimate post-COVID ridership once sufficient sample of travel
habits are collected; necessary model re-calibration work is
currently in progress.
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